www.chms.ru - вывоз мусора в Балашихе 

Динамо-машины  Моделирование транзисторов 

1 2 3 4 5 6 [ 7 ] 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

СхемотехничесЬие €П0€0бы 6а tt защелЪива иет в hackagax с ЮВЖ транзисторами

Введение

Преимущества ЮВТтранзиаоров при использовании их в импульсных силовых каскадах (особенно высоковольтных) общеизвестны: это высокая плотность тока, малые статические и динамические потери, отсутствие тока управления, устойчивость к короткому замыканию, простота параллельного соединения.

Отсутствие тока управления в статических режимах и общее низкое потребление по цепям питания позволяет отказаться от гальванически изолированных схем управления на дискретных элементах и создать интегральные схемы - драйверы. Драйверы, управляющие транзисторами нижнего плеча, в настоящее время выпускаются практически всеми ведущими фирмами. Кроме обеспечения тока затвора они способны выполнять и ряд вспомогательных функций таких, как защита от перегрузки по току, падения напряжения управления и ряд других.

В дополнение к ним, некоторые фирмы выпускают драйверы транзисторов верхнего плеча, вьщерживающие перепад напряжений до 600 В и даже 1200В, а также драйверы полумостовых и мостовых соединений мощных транзисторов. На вход этих драйверов подаются сигналы КМОП или ТТЛ уровня относительно отрицательной шины питания. Особая ценность таких микросхем состоит в том, что их выходные каскады способны питаться от так называемых бутстрепных конденсаторов в схемах зарядового насоса и не требуют плавающих источников питания.

Большую гамму драйверов различного назначения поставляет фирма International Rectifier, в том числе:

драйвер транзистора верхнего плеча IR2125

драйвер полумоста IR2nX

драйвер трехфазного моста IR213X

драйвер трехфазного моста на напряжение 1200В! IR223X

Среди наиболее известных можно также назвать драйверы нижнего плеча МС33153, МС34151 фирмы Motorola и драйверы с гальванической развязкой Hewlett Packard.

Все сказанное делает транзисторы IGBT в сочетании с микросхемами управления оптимальными элементами для



построения силовых ключевых каскадов мощностью до десятков киловатт. Однако указанные элементы имеют и ряд технологических недостатков, ограничивающих область их применения. Среди наиболее серьезных - наличие времени рассасывания базы биполярной части IGBT (хвоста) и способность транзисторов и драйверов к защелкиванию.

Причины защелкивания

Причиной защелкивания IGBT транзисторов является наличие триггерной структуры, образованной биполярной частью IGBT и паразитным NPN транзистором. Эквивалентная схема, учитывающая подобный эффект, показана на рис.1а. Такую эквивалентную схему приводили в своей документации многие фирмы, в частности, SIEMENS, TOSHIBA, FUJI и другие.

Наличие триггерной структуры приводит к тому, что при определенных условиях работы, когда напряжение на паразитном резисторе Rs превышает некоторое пороговое значение, транзистор Qs открывается, триггер опрокидывается и происходит защелкивание. Последствием этого, как правило, является лавинообразный выход прибора из строя. Повышение напряжения на Rs происходитлибо вследствие резкого возрастания тока (например при коротком замыкании), либо из-за большой скорости нарастания напряжения (когда фронт напряжения дифференцируется паразитной емкостью Cs).

При разработке схем с использованием транзисторов IGBT, в которых такая ситуация возможна, следует особое внимание уделять ограничению максимальных токов и ограничению dV/dt. Для этого существует ряд известных способов, в частности, правильный выбор тока защиты, выбор


Rmod



резистора затвора Rg и использование цепей, формирующих траекторию переключения. Все эти методы описаны в руководствах по использованию транзисторов.

С эффектом защелки ведется успешная борьба. Так, например, в Рекомендациях по применению фирмы International Rectifier уже в начале 90х годов указывалось, что триггерная структура подавлена полностью, и защелка исключена при всех режимах работы, включая ток короткого замыкания и любые достижимые фронты напряжений и токов. В документации SIEMENS 1997г. также говорится, что в транзисторах нового поколения паразитная полупроводниковая ти-ристорная структура отсутствует. В результате этого эквивалентная схема приобретает вид, показанный на рис.16). Кроме отсутствия эффекта защелкивания при этом обеспечивается также прямоугольная область безопасной работы (SOA), что особенно важно для разработчиков.

Однако защелкивание в микросхемах драйверов остается серьезной проблемой, с которой неизбежно сталкивается пользователь, работающий с практическими схемами. Причем, вдокументации, выпускаемой фирмами-разработчиками, этой проблеме внимания почти не уделяется.

Механизм возникновения защелки в драйверах несколько иной, чем это показано выше. На рис. 2 показан типичный выходной каскад драйвера, образованный комплиментарной парой КМОП транзисторов МР1 и MN1. В схеме также присутствуют паразитные биполярные двухколлекторые транзисторы 0Р1, 0N1, 0Р2, 0N2, связанные с активными КМОП



1 2 3 4 5 6 [ 7 ] 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Компрессор промышленный воздушный винтовой компрессор винтовой электрический.