www.chms.ru - вывоз мусора в Балашихе 

Динамо-машины  Сигналы и спектры 

1 2 3 4 5 6 7 8 9 10 11 [ 12 ] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

диоастрономические измерения проводятся, как правило, в отдаленных пустынных местах, вдали от естественных источников шума. Впрочем, существует один естественный шум, называемый тепловым, который устранить нельзя. Тепловой шум [4, 5] вызывается тепловым движением электронов во всех диссипативных компонентах - резисторах, проводниках и т.п. Те же электроны, которые отвечают за электропроводимость, являются причиной теплового шума.

Тепловой шум можно описать как гауссов случайный процесс с нулевым средним. Гауссов процесс nit) - это случайная функция, значение которой п в произвольный момент времени t статистически характеризуется гауссовой функцией плотности вероятностей:

Р(п) = -

(1.40)

где - дисперсия и. Нормированная гауссова функция плотности процесса с нулевым средним получается в предположении, что о=1. Схематически нормированная функция плотности вероятностей показана на рис. 1.7.

Далее мы часто будем представлять случайный сигнал как сумму случайной переменной, выражающей гауссов шум, и сигнала канала связи:

z = a + п.

Здесь г - случайный сигнал, а - сигнал в канале связи, а и - случайная переменная, выражающая гауссов шум. Тогда функция плотности вероятности p(z) выражается как

Р(г) = -

(1.41)

где, как и выше, - дисперсия и.

Р(л) = -Lexp oV2)t


Рис. 1.7. Нормированная (о = 1) гауссова функция плотности вероятности



Гауссово распределение часто используется как модель шума в системе, поскольку существует центральная граничная теорема [3], утверждающая, что при весьма общих условиях распределение вероятностей суммы j статистически независимых случайных переменных подчиняется гауссовому распределению при j - gt; оо, причем вид отдельных функций распределения не имеет значения. Таким образом, даже если отдельные случайные процессы будут иметь негауссово распределение, распределение вероятностей совокупности многих таких процессов будет стремиться к гауссовому распределению,

1.5.5.1. Белый шум

Основной спектральной характеристикой теплового шума является то, что его спектральная плотность мощности одинакова для всех частот, представляющих интерес для большинства систем связи; другими словами, источник теплового шума на всех частотах излучает с равной мощностью на единицу ширины полосы - от постоянной составляющей до частоты порядка Ю Гц. Следовательно, простая модель теплового шума предполагает, что его спектральная плотность мощности С {/) равномерна для всех частот, как показано на рис. 1.8, а, и записывается в следующем виде:

G (/) = Вт/Гц. (1.42)

Здесь коэффициент 2 включен для того, чтобы показать, что G (f) - двусторонняя спектральная плотность мощности. Когда мощность шума имеет такую единообразную спектральную плотность, мы называем этот шум белым. Прилагательное белый используется в том же смысле, что и для белого света, содержащего равные доли всех частот видимого диапазона электромагнитного излучения.

G {f) R {x)

Wo/2

No/2

a) 6)

Рис. 1.8. Белый шум. a) спектральная плотность мощности; б) автокорреляционная функция

Автокорреляционная функция белого шума дается обратным преобразованием Фурье спектральной плотности мощности шума (см. табл. А.1) и записывается следующим образом:

/г (т) = Г{С (/)} = 8(т). (1.43)

Таким образом, автокорреляционная функция белого шума - это дельта-функция с весом N(/2, находящаяся в точке т = 0, как показано на рис. 1.8, б. Отметим, что R {t) равна нулю для т?ьО, т.е. две различные выборки белого шума не коррелируют, вне зависимости от того, насколько близко они находятся.



Средняя мощность Я белого шума бесконечна, поскольку бесконечна ширина полосы белого шума. Это можно увидеть, получив из уравнений (1.19) и (1.42) следующее выражение:

= J.rf/=co. (1.44)

Хотя белый шум представляет собой весьма полезную абстракцию, ни один случайный процесс в действительности не может быть белым; впрочем, шум, появляющийся во многих реальных системах, можно предположительно считать белым. Наблюдать такой шум мы можем только после того, как он пройдет через реальную систему, имеющую конечную ширину полосы. Следовательно, пока ширина полосы шума существенно больше щирины полосы, используемой системой, можно считать, что шум имеет бесконечную ширину полосы.

Дельта-функция в уравнении (1.43) означает, что случайный сигнал и(/) абсолютно не коррелирует с Собственной смещенной версией для любого т gt; 0. Уравнение (1.43) показывает, что любые две выборки процесса белого шума не коррелируют. Поскольку тепловой шум - это гауссов процесс и его выборки не коррелируют, выборки шума также являются независимыми [3]. Таким образом, воздействие канала с аддитивным белым гауссовым шумом на процесс детектирования состоит в том, что шум независимо воздействует на каждый переданный символ. Такой канал называется каналом без памяти. Термин аддитивный означает, что шум просто накладывается на сигнал или добавляется к нему - никаких мультипликативных механизмов не существует.

Поскольку тепловой шум присутствует во всех системах связи и для большинства систем является заметным источником шума, характеристики теплового шума (аддитивный, белый и гауссов) часто применяются для моделирования шума в системах связи. Поскольку гауссов шум с нулевым средним полностью характеризуется его дисперсией, эту модель особенно просто использовать при детектировании сигналов и проектировании оптимальных приемников. В данной книге мы будем считать (если не огоюрено противное), что система подвергается искажению со стороны аддитивного белого гауссового шума с нулевым средним, хотя иногда такое упрощение будет чересчур сильным.

1.6. Передача сигнала через линейные системы

После того как мы разработали набор моделей для сигнала и шума, рассмотрим характеристики систем и их воздействие на сигналы и шумы. Поскольку систему с равным успехом можно охарактеризовать как в частотной, так и во временной области, для обоих областей бьши разработаны методы, позволяющие анализировать отклик линейной системы на произвольный входной сигнал. Сигнал, поданный на вход системы (рис. 1.9), можно описать либо как временной сигнал, xit), либо через его Фурье-образ, X{f). Использование временного анализа дает временной выход y(t), и в процессе будет определена функция h(t), импулы:ная характеристика, или импулы:ный отклик, сети. При рассмотрении ввода в частотной области мы найдем для системы частотную передаточную функцию Hif), которая определит частотный выход Y(f). Предполагается, что система линейна и инвариантна относительно времени. Также предполагается, что система не имеет скрытой энергии на момент подачи сигнала на вход.



1 2 3 4 5 6 7 8 9 10 11 [ 12 ] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358