www.chms.ru - вывоз мусора в Балашихе 

Динамо-машины  Сигналы и спектры 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 [ 133 ] 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

для детектирования как правильное или неправильное решение. Передачу на декодер таких мягких решений можно рассматривать как поступление семейства условных вероятностей различных символов (см. раздел 6.3.1). Можно показать [8], что максимизация PiZllf ) эквивалентна максимизации скалярного произведения последовательности кодовых слов и* * (состоящей из двоичных символов, представленных как биполярные значения) и аналогового значения полученной последовательности Z. Таким образом, декодер выбирает кодовое слово U , если выражение

1Е. Г 0.9)

,=ij=i

имеет максимальное значение. Это эквивалентно выбору кодового слова U* находящегося на ближайшем евклидовом расстоянии от Z. Даже несмотря на то что каналы с жестким и мягким принятием решений требуют различных метрик, концепция выбора кодового слова U* ближайшего к полученной последовательности Z, одинакова для обоих случаев. Чтобы в уравнении (7.9) точно выполнить максимизацию, декодер должен осуществлять арифметические операции с аналоговыми величинами. Это непрактично, поскольку обычно декодеры являются цифровыми. Таким образом, необходимо дискретизировать полученные символы z . Не напоминает ли вам уравнение (7.9) демодуляционную обработку, рассмотренную в главах З и 4? Уравнение (7.9) является дискретным вариантом корреляции входного полученного сигнала КО с опорным сигналом 5,(0. которая выражается уравнением (4.15). Квантованный гауссов канал, обычно называемый каналом с мягкой схемой решений, - это модель канала, в которой предполагается, что декодирование осуществляется на основе описанной ранее мягкой схемы принятия решения.

7.3.3. Алгоритм сверточного декодирования Витерби

В 1967 году Витерби разработал и проанализировал алгоритм [13], в котором, по сути, реализуется декодирование, основанное на принципе максимального правдоподобия; однако в нем уменьшается вычислительная нагрузка за счет использования особенностей структуры конкретной решетки кода. Преимущество декодирования Витерби, по сравнению с декодированием по методу грубой силы , заключается в том, что сложность декодера Витерби не является функцией количества символов в последовательности кодовых слов. Алгоритм включает в себя вычисление меры подобия (или расстояния), между сигналом, полученным в момент времени t и всеми путями решетки, входящими в каждое состояние в момент времени ti. В алгоритме Витерби не рассматриваются те пути решетки, которые, согласно принципу максимального правдоподобия, заведомо не могут быть оптимальными. Если в одно и то же состояние входят два пути, выбирается тот, который имеет лучшую метрику; такой путь называется выживающим. Отбор выживающих путей выполняется для каждого состояния. Таким образом, декодер углубляется в решетку, принимая решения путем исключения менее вероятных путей. Предварительный отказ от маловероятных путей упрощает процесс декодирования. В 1969 году Омура (Omura) [14] показал, что основу алгоритма Витерби составляет оценка максимума правдоподобия. Отметим, что задачу отбора оптимальных путей можно выразить как выбор кодового слова с максимальной метрикой правдоподобия или минимальной метрикой расстояния.

424 Глава 7. Канальное кодирование: часть 2



7.3.4. Пример сверточного декодирования Витерби

Для простоты предположим, что мы имеем дело с каналом BSC; в таком случае приемлемой мерой расстояния будет расстояние Хэмминга. Кодер для этого примера показан на рис. 7.3, а решетчатая диаграмма - на рис. 7.7. Для представления декодера, как показано на рис. 7.10, можно воспользоваться подобной решеткой. Мы начинаем в момент времени ti в состоянии 00 (вследствие очистки кодера между сообщениями декодер находится в начальном состоянии). Поскольку в этом примере возможны только два перехода, разрешающих другое состояние, для начала не нужно показывать все ветви. Полная решетчатая структура образуется после момента времени t. Принцип работы происходящего после процедуры декодирования можно понять, изучив решетку кодера на рис. 7.7 и решетку декодера, показанную на рис. 7.10. Для решетки декодера каждую ветвь за каждый временной интервал удобно пометить расстоянием Хэмминга между полученным кодовым символом и кодовым словом, соответствующим той же ветви из решетки кодера. На рис. 7.10 показана последовательность сообщений т, соответствующая последовательности кодовых слов и, и искаженная шумом последовательность Z= И 01 01 10 01 ... . Как показано на рис. 7.3, кодер характеризуется кодовыми словами, находящимися на ветвях решетки кодера и заведомо известными как кодеру, так и декодеру. Эти слова являются кодовыми символами, которые можно было бы ожидать на выходе кодера в результате каждого перехода между состояниями. Пометки на ветвях решетки декодера накапливаются декодером в процессе. Другими словами, когда получен кодовый символ, каждая ветвь решетки декодера помечается метрикой подобия (расстоянием Хэмминга) между полученным кодовым символом и каждым словом ветви за этот временной интервал. Из полученной последовательности Z, показанной на рис. 7.10, можно видеть, что кодовые символы, полученные в (следующий) момент времени ti, - это 11. Чтобы пометить ветви декодера подходящей метрикой расстояния Хэмминга в (прошедший) момент времени tu рассмотрим решетку кодера на рис. 7.7. Видим, что переход между состояниями 00 00 порождает на выходе ветви слово 00. Однако получено 11. Следовательно, на решетке декодера помечаем переход между состояниями 00 00 расстоянием Хэмминга между ними, а именно 2. Глядя вновь на решетку кодера, видим, что переход между состояниями 00 10 порождает на выходе кодовое слово 11, точно соответствующее полученному в момент г, кодовому символу. Следовательно, переход на решетке декодера между состояниями 00 10 помечаем расстоянием Хэмминга 0. В итоге, метрика входящих в решетку декодера ветвей описывает разницу (расстояние) между тем, что было получено, и тем, что могло бы быть получено, имея кодовые слова, связанные с теми ветвями, с которых они были переданы. По сути, эти метрики описывают величину, подобную корреляциям между полученным кодовым словом и каждым из кандидатов на роль кодового слова. Таким же образом продолжаем помечать ветви решетки декодера по мере получения символов в каждый момент времени В алгоритме декодирования эти метрики расстояния Хэмминга используются для нахождения наиболее вероятного (с минимальным расстоянием) пути через решетку.

Смысл декодирования Витерби заключается в следующем. Если любые два пути сливаются в одном состоянии, то при поиске оптимального пути один из них всегда можно исключить. Например, на рис. 7.11 показано два пути, сливающихся в момент времени ц в состоянии 00.



Входная

информационная

последовательность

Переданные

кодовые слова

Принятая

последовательность

f2 1

t3 1

-it-

f4 1

Состояние а =

00 laquo;г-

b= 10

c = 01

d= 11


1 Метрика ветви

Рис. 7.10. Решетчатая диаграмма декодера {степень кодирования 1/2, К= 3)

Давайте определим суммарную метрику пути по Хэммингу для данного пути в момент времени t, как сумму метрик расстояний Хэмминга ветвей, по которым проходит путь до момента t,. На рис. 7.11 верхний путь имеет метрику 4, нижний - метрику 1. Верхний путь нельзя выделить как оптимальный, поскольку нижний путь, входящий в то же состояние, имеет меньшую метрику. Это наблюдение поддерживается Марковской природой состояний кодера. Настоящее состояние завершает историю кодера в том смысле, что предыдущие состояния не могут повлиять на будущие состояния или будущие ветви на выходе.

Состояние а = 00

Ь= 10 lt;

с = 01

d= 11


Метрика пути = 4

Метрика пути = 1

Рис. 7.11. Метрики пути для двух сливающихся путей

В каждый момент времени t, в решетке сушествует 2* состояний, где К - это длина кодового ограничения, и в каждое состояние может войти два пути. Декодирование Витерби состоит в вычислении метрики двух путей, входящих в каждое состояние, и исключении одного из них. Такие вычисления проводятся для каждого из 2* состояний или узлов в момент времени t,; затем декодер переходит к моменту времени t, + i, и процесс повторяется. В данный момент времени метрика выжившего пути для каждого состояния обозначается как метрика для этого состояния в этот момент времени. Первые несколько шагов в нашем примере декодирования будут следующими (рис. 7.12). Предположим, что последовательность входных данных т, кодовое слово U и полученная последовательность Z аналогичны показанным на рис. 7.10. Допустим, что декодер знает верное ис-

01 fs 1



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 [ 133 ] 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358