www.chms.ru - вывоз мусора в Балашихе 

Динамо-машины  Сигналы и спектры 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 [ 175 ] 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

Пусть

Тогда, из уравнения (9.6,а),

=xlog2(l + x)

l = log2(l + x)\

В пределе, при C/W - gt; О, получаем

Е, 1

= 0,693 (9.7)

Ло logj е или, в децибелах.

Это значение EJNg называется пределом Шеннона (Shannon limit). На рис. 9.1, а предел Шеннона - это кривая зависимости Рв от EJNo при Л- raquo; raquo;. При Eb/No = -l,6 данная кривая скачкообразно изменяет свое значение с Рв = 1/2 на Fg = 0. В де11ствительности достичь предела Шеннона невозможно, поскольку к возрастает неограниченно, а с ростом к возрастают требования к полосе пропускания и повышается сложность реализации системы. Работа Шеннона - это теоретическое доказательство существования кодов, которые могут улучшить Рв или снизить требуемое значение EJNo от уровней некодированных двоичных схем модуляции до уровней, приближающихся к предельной кривой. При вероятности появления битовой ошибки 10 двоичная фазовая манипуляция (binary phase-shift-lceying - BPSK) требует значения EJNo, равного 9,6 дБ (оптимум некодированной двоичной модуляции). Следовательно, в данном случае в работе Шеннона указано, что теоретически, за счет использования кодирования, производительность можно повысить на 11,2 дБ по сравнению с некодированной двоичной модуляцией. В настоящее время большую часть такого улучшения (почти 10 дБ) можно получить с помощью турбокодов (см. раздел 8.4). Оптимальную разработку системы можно наилучшим образом представить как поиск рациональных компромиссов среди различных Офаничений и взаимно противоречивых требований. Компромиссы модуляции и кодирования, т.е. выбор конкретных схем модуляции и кодирования для наилучшего использования переданной мощности и ширины полосы, являются очень важными, поскольку имеется много причин для снижения мощности, а также существует необходимость экономии спектра радиочастот.

9.4.2. Энтропия

Для разработки системы связи с определенной способностью к обработке сообщений нужна метрика измерения объема передаваемой информации. Шеннон [3] ввел такую метрику Я, называемую энтропией источника сообщений (имеющего п возможных

9.4. Теорема Шеннона-Хаотли о поопускной способности канала 551



выходных значений). Энтропия определяется как среднее количество информации, приходящееся на один выход источника, и выражается следующим образом:

Н = Pj log2 р, бит/выход источника.

(9.8)

( = 1

Здесь Pi - вероятность i-ro выходного значения и Хр, = 1. Если сообщение двоичное или источник имеет только два возможных выходных значения с вероятностями р и q=(l- р), выражение для энтропии примет следующий вид:

Н = -(р \ogip + q logjg). Зависимость энтропии от р показана на рис. 9.5.

(9.9)


о 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 Вероятность, р

Рис. 9.5. Зависимость энтропии от вероятности (два события)

Величина Н имеет ряд особенностей.

1. Если логарифм в уравнении (9.8) берется по основанию 2, единица измерения Н - среднее число бит на событие. Здесь единица измерения бит - это мера количества информации, и ее не следует путать с термином бит , означающим двоичная цифра (binary digit - bit).

2. Сам термин энтропия имеет несколько неопределенный смысл, что вызвано наличием нескольких формулировок в статистической механике. Для информационного источника с двумя равновероятными состояниями (например, выбрасывание монеты правильной формы) из рис. 9.5 видно, что неопределенность исхода и, следовательно, среднее количество информации максимальны. Как



только вероятности уходят от равновероятного состояния, среднее количество информации снижается. В пределе, когда одна из вероятностей обращается в нуль, Я также обращается в нуль. Результат известен до того, как произойдет событие, так что исход не несет в себе дополнительной информации.

3. Для иллюстрации связи между количеством информации и априорной вероятностью (если априорная вероятность сообщения на приемнике является нулем или единицей, сообщение можно не посылать) рассмотрим следующий пример. После девятимесячной беременности женщина оказывается в родильной палате. Муж с волнением ждет в приемной. Через некоторое время к нему подходит врач и говорит: Примите мои поздравления, вы стали отцом . Какую информацию отец получил от врача после медицинского исходсР. Почти никакой; отец практически достоверно знал, что ребенок должен родиться. Если бы врач сказал, вы стали отцом мальчика или вы стали отцом девочки , он передал бы 1 бит информации, поскольку существует 50% вероятность того, что ребенок окажется девочкой или мальчиком.

Пример 9.2. Среднее количество информации в английском языке

а) Найдите среднее количество информации в бит/знак для английского языка, считая, что каждая из 26 букв алфавита появляется с равной вероятностью. Пробелы и знаки пунктуации не учитываются.

б) Поскольку буквы в английском языке (или каком-либо ином) появляются с различной частотой, ответ на п. а - это верхняя граница среднего количества информации на знак. Повторите п. а, считая, что буквы алфавита появляются со следующими вероятностями:

для букв а, е, о, t

для букв h, i, n, т, s

для букв с, d, f, 1, m, р, u, у

для букв Ь, g, j, к, q, v, w, x, z

/7 = 0,10: p = 0,07 /7 = 0,02 p = 0,01 Решение

I r n

а) Я = - gt; -log2 - =4,7 бит/знак

26 V26/

( = 1

б) Я = -(4 X 0,1 log2 0,1 + 5 X 0,07 log2 0,07 + 8 x 0,02 log2 0,02 + 9 x 0,01 log2 0,01) = 4,17 бит/знак

Если 26 букв алфавита нужно выразить в некоторой двоичной схеме кодирования, то для каждой буквы требуется пять двоичных цифр. Пример 9.2 показывает, что должен существовать способ кодирования английского текста в среднем меньшим числом двоичных цифр для одной буквы (среднее количество информации, содержащееся в каждом знаке, меньше 5 бит). Подробнее тема кодирования источника будет рассмотрена в главе 13.

9.4.3. Неоднозначность и эффективная скорость передачи информации

Пусть по двоичному симметричному каналу (определенному в разделе 6.3.1) со скоростью 1000 двоичных символов/с происходит передача информации, а априорная вероятность передачи нуля или единицы одинакова. Допустим также, что помехи в канале



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 [ 175 ] 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358