www.chms.ru - вывоз мусора в Балашихе 

Динамо-машины  Сигналы и спектры 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 [ 193 ] 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

из первого правила следует наличие 2* = 2 = 4 переходов в каждое последующее состояние. На первый взгляд решетка с четырьмя состояниями без параллельных путей может удовлетворить такому условию, если реализовать полностью замкнутую решетку (каждое состояние связано со всеми последующими состояниями). Однако попробуйте нарисовать полностью замкнутую решетку с четырьмя состояниями без параллельных путей, удовлетворяя при этом правилам 4 и 5 для системы 8-PSK. Это невозможно! Нарушение правил приведет к результатам, близким к оптимальным. В следующем разделе показана решетка с восемью состояниями для схемы 8-PSK (количество состояний уже не меньше М), где могут быть соблюдены все правила разбиения без требования наличия параллельных путей.

9.10.4.2. Решетка с восемью состояниями

После экспериментирования с использованием различных структур решетки и присвоением канальных сигналов, в качестве оптимального для восьми состояний был выбран код 8-PSK, показанный на рис. 9.26 [31]. Путь ошибочного события с минимальным расстоянием до нулевого пути помечен номерами сигналов 6, 7, 6. Поскольку здесь отсутствуют параллельные пути, офаничивающие евклидов просвет,

квадрат этого просвета равен = df +dQ + df = 4,585, где расстояния do и di получены

из рис. 9.22. Асимптотическая эффективность кодирования системы ТСМ с восемью состояниями относительно эталонной системы 4-PSK равна следующему:

С(дБ) = 10х1в

(dl +d +df )кодироваипая 8-PSK (эт ) некодированная 4-PSK

= 10 X Ig

4,585!

= 3,6 (дБ). (9.60)

Подобным образом можно показать, что решетчатая структура с шестнадцатью состояниями для кодированного множества 8-PSK дает эффективность кодирования 4,1 дБ, по сравнению с некодированной схемой 4-PSK [31]. Если состояний меньше восьми, дополнительная эффективность кодирования может быть получена путем введения асимметрии в множество модулирующих сигналов [33].


Рис. 9.26. Решетчатая диаграмма с восьмью состояниями для кода 8-PSK

9.10.4.3. Решетчатое кодирование для схемы QAM

Метод разбиения набора сигналов можно применять и к другим типам модуляции. Рассмотрим использование кодированной схемы 16-QAM с тремя информационными



битами на интервал модуляции, где в качестве эталонной системы выбрана некодированная 8-PSK. Для нормированного пространства 16-QAM выберем среднее значение квадрата амплитуды набора сигналов, равное единице, что дает do = 2/л/10 . На рис. 9.27 показано разбиение сигналов 16-QAM на подмножества с возрастающими расстояниями между элементами (о lt; d\ lt; di lt; d,). Кодовая система 16-QAM с восемью состояниями, полученная путем разбиения набора согласно описанной ранее процедуре, показана на рис. 9.28 [31]. Путь ошибочной комбинации с минимальным расстоянием обозначен как D, Ds, D2. Хотя при использовании схемы ТСМ имеется эффективность кодирования, при декодировании расщиренного пространства сигнала существует потенциальная неопределенность фазы, которая может серьезно ухудшить достоверность передачи. Вей (Wei) [34] применил концепцию дифференциального кодирования к методам ТСМ; полученные при этом коды не зависят от поворотов элементарных сигналов на углы 90 deg;, 180 deg; и 270 deg;.

До = 16-аАМ t

-do = 2/ViO = 0,632

О О

о о

о о о о

- Множество B-i

о о

di=V2do

о о о о

Со / \ Сг

О О О О о

Do М D4 О2 М Об

о о

о о о

о о о о

о о о

о о о о

о о о о о о

о о о о

ООО raquo;

о о о о о о о

с, / \ Сз

о о о о

о о о о laquo;о

о о о о

о о о о laquo;о

d2 = gt;2d,

о о о о

о о о

о о о о

о о о о о о

ООО raquo;

о о о о

о о

о о

о о о о о о о о о о

da = /2 dz

Рис. 9.27. Разбиение Унгербоека сигналов 16-QAM


Рис. 9.28. Решетчатая диаграмма с восемью состояниями для передачи сигнала 16-QAM

Вкратце можно сказать, что решетчатое кодирование в каналах с ограниченной! полосой включает больший алфавит сигналов (т.е. М-арные схемы РАМ, PSK илй QAM) для компенсации избыточности, которая вводится при кодировании; таким об-т



разом, ширина полосы частот канала не возрастает. Даже если увеличение размера набора сигналов уменьшает минимальное расстояние между сигналами, евклидов просвет между разрешенными кодовыми последовательностями превышает величину, необходимую для компенсации этого уменьшения. В результате полная эффективность кодирования равна от 3 до 6 дБ без какого-либо расширения полосы частот [6, 31]. В сле-дуюшем разделе эти идеи будут дополнительно проиллюстрированы на примере.

9.10.5. Пример решетчатого кодирования

В предыдущем разделе обсуждалось отображение сигналов в переходы решетки безотносительно к конечному отображению канальных символов (кодовых битов или кодовых слов) в переходы решетки. В этом разделе пример решетчатого кодирования начнется с рассмотрения точного определения структуры кодера. Структура кодера автоматически определяет решетчатую диафамму и присвоение кодовых слов переходам решетки. Следовательно, в этом примере, если сигналы присвоены переходам решетки (а значит, подразумевающимся кодовым словам), уже нет возможности произвольно присваивать кодовые слова сигналам, как это делалось ранее при отсутствии схемы кодера.

Рассмотрим кодер, использующий сверточный код со степенью кодирования 2/3 для передачи двух бит информации за один интервал модуляции. Пример подобного кодера показан на рис. 9.29. Степень кодирования 2/3 достигается путем передачи без изменения одного бита из каждой пары битов исходной последовательности и кодирования второго бита двумя кодовыми битами (выполняется кодером со степенью кодирования 1/2 и длиной кодового Офаничения К=Ъ). Как показано на рисунке, биты из входной последовательности попадают в сдвиговый регистр только через один (/Иг, /и ...). Может возникнуть вопрос: насколько может быть хорошей такая система, если преимущества, определяемые избыточностью, получают только 50% бит. Напомним пример с волшебником, который определял, что некоторые биты довольно уязвимы и поэтому они присваивались модулирующим сигналам с наилучшими пространственными характеристиками, в то время как другие считались устойчивыми и присваивались сигналам с худшими пространственными характеристиками. Модуляция и кодирование происходят одновременно; якобы некодированные не будут забыты, они выиграют от присвоения наилучших сигналов. Следует подчеркнуть, что кодирование и декодирование в схеме ТСМ происходит преимущественно на сигнальном уровне (в нашем первом описании ТСМ о каком-либо кодере не упоминалось), тогда как в традиционном коде с исправлением ошибок кодирование и декодирование происходит только на битовом уровне.

Решетчатая диаграмма на рис. 9.30 описывает схему кодера с рис. 9.29. Как и в главе 7, названия состояний соответствуют содержимому крайних правых К- 1=2 разрядов регистра сдвига. Параллельные переходы на решетке (рис. 9.30) обусловлены некодированными битами; некодированный бит представляется крайним левым битом каждого перехода решетки. В каждом состоянии начинается четыре перехода. Для каждого состояния имеется два верхних перехода - от пары входных информационных битов (/И/И2 равны 00 и 10); два нижних перехода проистекают от пары 01 и 11. На рис. 9.30 показана решетчатая структура, подобная показанной на рис. 9.24, за исключением того, что каждый переход на рис. 9.30 обозначен назначенным ему кодовым словом. Стоит повторить, что схема кодера определяет, какие кодовые слова появляются на переходах решетки; разработчик системы только присваивает сигналы переходам. Следовательно, когда уже имеется схема (поведение которой описывается



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 [ 193 ] 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358