www.chms.ru - вывоз мусора в Балашихе 

Динамо-машины  Сигналы и спектры 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 [ 208 ] 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

ковых интегратора невозможно. Следовательно, сигналы из двух ветвей контура будут сдвинуты относительно друг друга, даже если теоретически они должны быть идентичны. Данный сдвиг будет небольшим для качественно спроектированных интеграторов, но он приведет к постепенному уходу от синхронизации при наличии продолжительных последовательностей одинаковых информационных символов. Во избежание этого можно либо, что, вероятно, наиболее очевидно, форматировать данные так, чтобы гарантированно не было достаточно длительных интервалов без перехода, либо модифицировать структуру схемы таким образом, чтобы она содержала один интегратор. Примером структур такого типа является контур сглаживания, рассмотренный в связи с синхронизацией систем расширенного спектра в главе 12.

Еще один момент, связанный с проектированием контура, - это интервалы интегрирования. В примере, приведенном на рис. 10.14, интегрирование охватывает примерно три четверти периода передачи символа. В действительности величина этого интервала может быть от половины до практически всего периода передачи символа. Почему не меньше половины? Компромисс достигается между объемом проинтегрированного щума и интерференцией в стробе, с одной стороны, и длительностью сигнала, с другой. Как было справедливо для нелинейной модели контуров фазовой автоподстройки частоты, схемы этого типа трудно анализировать; определение производительности обычно выполняется с помощью компьютерного моделирования. Особенно это актуально для перекрывающихся интервалов интегрирования, подобных показанным на рис. 10.14, поскольку выборки щума в двух стробах будут коррелировать. Гарднер (Gardner) [5] показал, что для нормированного входного сигнала в 1 В, аддитивного белого гауссового шума, случайной последовательности данных (вероятность перехода ), опережающего и запаздывающего интегрирования, продолжительностью половина интервала передачи бита, и для больших отношений сигнал/шум в контуре относительное случайное смещение синхронизации приблизительно описывается следующим выражением:

= 2NoBi. (10.56)

Здесь Ло - (нормированная) спектральная плотность мощности, Г - интервал передачи символа, 2lBl - щирина полосы контура.

10.2.2.3. Ошибки символьной синхронизации и вероятность символьной ошибки

Влияние ошибки символьной синхронизации на вероятность битовой ошибки для сигнала с модуляцией BPSK при аддитивном белом гауссовом шуме показано на рис. 10.15. Из графика видно, что для относительного случайного смещения синхронизации, меньшего 5%, ухудшение отношения сигнал/шум меньше 1 дБ. Сравнивая воздействие ошибки символьной синхронизации с влиянием фазового шума (см. рис. 10.8), видим, что ошибка символьной синхронизации, взятая относительно длительности передачи символа, не так сильно влияет на характеристики системы, как фазовый щум, взятый относительно цикла. Впрочем, в обоих случаях ухудшение характеристики повышается с ростом ошибки.




6 8 Eb/No iaS)

Рис. 10.15. Зависимость вероятности битовой ошибки от EJNo при использовании в качестве параметра среднеквадратичсского отклонения ошибки символьной синхронизации cse. (Перепечатано с разрешения авторов из Lindsey W. С. and Simon М. К. Telecommunication Systems Engineering, Prentice-Hall. Inc., Englewood Cliffs, N. J., 1973.)

Пример 10.7. Влияние случайного смещения синхронизации

С помощью рис. 10.15 определите влияние 10%-ного случайного смещения синхронизации на систему, в которой требуется поддерживать вероятность ошибки 10 .

Решение

Из рис. 10.15 видно, что вероятность битовой ошибки 10 требует отношения SNR порядка 6,7 дБ при отсутствии любого случайного смещения синхронизации. Из того же рисунка видно, что при относительном случайном смещении синхронизации 10% (Ое/Г=0,1) необходимо отношение SNR порядка 12,9 дБ. Следовательно, способность выдерживать такое большое случайное смещение синхронизации потребует на 6,2 дБ большего отношения сигнал/шум, чем нужно для поддержания вероятности ошибки 10 при отсутствии случайного смещения. Данный пример показывает, как можно использовать графики, приведенные на рис. 10.15. В то же время на практике никакая система связи не будет проектироваться с четырехкратным запасом мощности для возможности работы при большой ошибке символьной синхронизации. В таю1х случаях обычно применяется другой подход, например перепроектирование системных фильтров с целью увеличения К в уравнении (10.55), что приведет к уменьшению случайного смещения символьной синхронизации.



10.2.3. Синхронизация при модуляциях без разрыва фазы 10.2.3.1. Основы

Модуляции без разрыва фазы (Continuous-Phase Modulation - СРМ) появились при исследовании методов передачи сигналов, эффективно использующих полосу. По мере того как полоса становилась дороже, повышалась важность этих схем. С появлением этих модуляций возникли новые вопросы в области синхронизации, особенно символьной. Эффективность использования полосы схемой СРМ достигается за счет сглаживания сигнала во временной области. Это сглаживание приведет к концентрации энергии сигнала в узкой полосе, что обеспечит уменьшение ширины полосы, требуемой для передачи сигнала, и размещение соседних сигналов плотнее друг к другу. В то же время, вследствие сглаживания сигнала во временной области, проявляется тенденция к уничтожению символьных переходов, от которых зависит работа множества схем синхронизации. Имеется и другая, родственная проблема - при использовании схемы СРМ сложно различить последствия ошибки фазы несущей и ошибки символьной синхронизации, что делает взаимозависимыми задачи сопровождения фазы и синхронизации. В защиту сглаживания в схеме СРМ говорит то, что в большинстве случаев, представляющих практический интерес, характеристики приемников относительно нечувствительны к средним ошибкам синхронизации [3].

В комплексной форме записи нормированный сигнал СРМ имеет следующий вид:

sit) = ехр {/[сой/ + е + \j/(?-т, а)]). (10.57)

Здесь Mb - несущая частота, 9 - фаза несущей (измеряемая относительно фазы приемника), а vif(r, а) - избыточная фаза сигнала sit). Именно \j/(r, а) и является носителем информации сигнала. Кроме того, у(ла) определяет, какая ширина полосы требуется сигналу; требуемая ширина полосы иногда называется занятостью полосы сигнала. При рассмотрении уменьшения или минимизации требуемой ширины полосы с точки зрения теории Фурье можно видеть, что компоненты относительно высокой частоты связаны с относительно резкими скачками сигнала во временной области [22]. Следовательно, для снижения или устранения высокочастотных компонентов следует сгладить все острые углы или и резкие скачки сигнала во временной области. При передаче сигналов с использованием

схемы СРМ это выполняется путем объединения трех методов.

1. Использование сигнальных импульсов, имеющих непрерывные производные нескольких порядков.

2. Отдельным сигнальным импульсам разрешается занимать множественные интервалы передачи сигнала (т.е. намеренно вводится некоторая межсимвольная интерференция).

3. Снижение максимального разрешенного изменения фазы в символьном интервале.

Не все схемы СРМ используют все перечисленные выше методы, но в каждой схеме применяются хотя бы некоторые из них. Для схем СРМ следует отметить, что в начале каждого интервала передачи символа избыточная фаза \j/(r, а) является Марковским процессом [4], поскольку она зависит только от фазы в начале символа и значения текущего символа. Значение фазы в начале символа является следствием некоторого числа предьщущих символов. Следовательно, для частного случая конечного числа возможных состояний фазы получается канал с конечным числом состояний. Таким образом, избыточную фазу можно определить следующим образом:



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 [ 208 ] 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358