www.chms.ru - вывоз мусора в Балашихе 

Динамо-машины  Сигналы и спектры 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 [ 214 ] 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

результатом измерений ошибки, произведенных на узле, может быть короткая цифровая последовательность. Подобное эффективное использование обратного канала может быть важным, если обратный канал является единственным на большое количество терминалов, использующих уплотнение с временным разделением. Еще одно потенциальное преимущество состоит в том, что средство измерения ошибки на центральном узле может совместно использоваться всеми терминалами, которые связываются через этот узел. Это, в свою очередь, может значительно снизить потребление ресурсов системы. Принципиальным потенциальным преимуществом обработки на терминале является то, что связь с центральным узлом не всегда является легкой задачей, а из соображений надежности, возможно, центральный узел должен быть максимально простым. Описанная ситуация - это, например, использование в роли центрального узла космического спутника. Еще одним потенциальным преимуществом обработки на терминале является то, что результат может быть получен быстрее, поскольку при использовании центрального узла всегда имеется некоторая задержка. Это может быть важно, если параметры канала меняются очень быстро. Основные недостатки заключаются в неэффективном использовании обратного канала и в том, что обратные сигналы может оказаться сложно интерпретировать. Сложность возникает, когда центральный узел является не просто ретранслятором, а выполняет функцию принятия решения относительно значений символов и передает эти решения по обратному каналу. Возможность принятия решения относительно значений символов может значительно снизить вероятность появления ошибки при передаче между терминалами; кроме того, это усложняет процедуру синхронизации. Это объясняется тем, что сдвиги частоты и отсчета времени неявно присутствуют в обратном сигнале, т.е. постольку, поскольку они влияют на процесс принятия решения относительно значения символов. Рассмотрим в качестве примера передачу сигналов в модуляции BFSK на центральный узел, принимающий некогерентные двоичные решения. Решения будут зависеть от энергии детектируемого сигнала в детекторах метки и паузы. (Напомним, что метка (mark) - это название двоичной единицы, а пауза (space) - двоичного нуля.) Если переданный сигнал - это последовательность чередующихся меток и пауз, сигнал на центральном узле можно смоделировать следующим образом:

sin [(соо + со, + Дсо)? + 0] 0 lt;t lt;At \ sin[(cOo+Асо)/ + е] At lt;t lt;T

Здесь Т - интервал передачи символов, ссц, - частота одного символа, {щ + cOj.) - частота другого символа, Дсо - ошибка по частоте на центральном узле, Дг - ошибка времени поступления сигнала на центральный узел, а в - произвольная фаза. Теперь, если

KOcoscOof (10.92)

r{t) sin coof dt (10.93)

ftftft Гпяря in Пмнхпонизяиия



представляют квадратурные компоненты детектора, то энергаю детектируемого сигнала можно записать следующим образом:

sin[Aco(r-AO/2]Y

sin[(co,+Дсо)Д?/2] (со +Дсо)Г

(10.94)

COS (ДсоДг) -I- cos [ДюГ- (cOj -i- Дсо)Дг] - cos (ДсоТ - cos (юДг)

2Дю(ю, -I- Дю)Г

В частном случае нулевой ошибки времени А/ уравнение (10.94) упрощается до следующего вида:

sin {ШТП)

А(ЛТ

При нулевой ошибке по частоте, получаем следующее:

Гг-дЛ

2 г

sin (WjAf/2)

(10.95)

(10.96)

Относительно выражений (10.94)-( 10.96) следует сделать одно важное замечание: любая ошибка времени, частотный сдвиг или их комбинация снизит энергию принятого сигнала в детекторе, согласованном с истинным сигналом, и увеличит энергию в другом детекторе. Это приведет к уменьшению эффективного расстояния между сигналами в сигнальном пространстве и повышению вероятности ошибки. В то же время измерения вероятности ошибки (единственное, что доступно по обратному каналу) не позволяют определить, вызвана ли ошибка в результате сбоя времени или частоты (или их комбинации). Следовательно, передача обычных сигналов не дает отклика, который можно было бы использовать для синхронизации.

Полезным методом точной предварительной коррекции частоты для нашего примера передачи сигналов с модуляцией BFSK является передача постоянного тона, частота которого равна среднему от двух символьных частот. Подобный тон должен создавать случайную двоичную последовательность в обратном канале с равным числом меток и пауз. Смещение частоты со среднего значения приведет к доминированию пауз или меток. Нахождение центральной частоты описанным методом позволяет провести точную предварительную коррекцию частоты сигналов. После нахождения точной частоты передатчик может передавать последовательность чередующихся пауз и меток с целью определения точного отсчета времени. Изменяя отсчет времени при передаче (в пределах половины интервала передачи символа), передатчик может искать отсчет времени, дающий максимальное число ошибок. Если передача поступает на центральный узел со смещением относительно истинного отсчета времени на половину интервала передачи символа, оба детектора получают равную энергию и последовательность в обратном канале будет случайной. Определив время, когда переданные и полученные сигналы декоррелируют, передатчик вычисляет точное время передачи. Отметим, что данная процедура дает лучшие результаты, чем попытка найти точку с минимальным числом ошибок. Любая качественно разработанная система будет обладать достаточной энергией передачи, допускающей незначительные погрешности синхронизации времени; так что безошибочный обратный сигнал может быть получен и при неидеальной синхронизации. Фактически, чем больше отношение сигнал/шум.

10.3. Сетевая синхоонизаиия



тем хуже работает процедура нахождения оптимума. В то же время процедура нахождения наихудшего варианта будет хорошо работать в любой качественной системе, а ее потенциальная точность повышается с увеличением отношения сигнал/шум. Это можно понять интуитивно, поскольку увеличение отношения сигнал/шум позволяет системе справляться с большими погрешностями синхронизации; так что уменьшение вероятности ошибки при уменьшении погрешности отсчета времени от половины времени передачи символа будет более быстрым при большом отношении сигнал/шум. Таким образом, это позволит точнее определить смещение отсчета времени на половину интервала передачи символа.

10.4. Резюме

В данной главе рассмотрены фундаментальные проблемы и вопросы, связанные с синхронизацией в цифровой связи. Компромиссы обычно заключаются между стоимостью и сложностью, с одной стороны, и вероятностью ошибки, с другой. В главе обсуждались синхронизация приемника и контуры фазовой автоподстройки частоты (phase-lock loop - PLL, ФАПЧ), в частности. Обычно более активную роль в обеспечении синхронизации канала связи играет именно приемник. Даже в тех случаях, когда предполагается, что более активную роль играет передатчик, как в некоторых спутниковых каналах связи, процесс часто облегчается за счет обратного канала, по которому терминал получает информацию с приемника. Таким образом, более важное значение имеет синхронизация приемника. Контуры ФАПЧ и их разновидности - это основные схемы управления, используемые для сопровождения (отслеживания) изменений фазы поступающего сигнала. Математическое описание реакции контура ФАПЧ на данный входной сигнал включает решение нелинейного дифференциального уравнения. Было показано, впрочем, что при стационарных условиях линеаризованная модель дает достаточно хорошее приближенное описание системы. Для случая, когда линеаризованная модель неприменима, были представлены результаты Витерби (Viterbi) [8], полученные для контуров первого порядка. Строго, данные результаты справедливы только для контуров первого порядка, но было показано [5], что и для контуров более высоких порядков они являются полезным приближением.

В этой главе был рассмотрен крайне важный частный случай схем подавления несущей. Данные схемы необходимы для сопровождения фазы входного сигнала, не имеющего средней энергии на несущей частоте. Распространенный пример подобного сигнала - модулированный с использованием обычной антиподной схемы BPSK. В данной ситуации гармоника подавления несущей создается посредством применения нелинейности и далее отслеживается.

Следующий уровень синхронизации - символьная. Здесь были рассмотрены основные классы символьной синхронизации. Открытые синхронизаторы работают непосредственно с модулированным сигналом, отмечая символьные переходы. Замкнутые синхронизаторы используют управляющий контур обратной связи для нахождения и сопровождения символьных переходов.

Наивысший из рассмотренных уровней синхронизации - кадровая. Для получения данных в удобной форме приемник должен определить, какие символы и к каким кадрам принадлежат. Данное знание эквивалентно наличию кадровой синхронизации, что обычно выполняется путем включения в поток информации о некоторой характерной последовательности битов, известной приемнику. Приемник исследует входные данные.

670 Гпяня 1П Рмиуппим-ая! 1ма



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 [ 214 ] 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358