www.chms.ru - вывоз мусора в Балашихе 

Динамо-машины  Сигналы и спектры 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 [ 265 ] 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

13.1. Источники

Кодирование источника связано с задачей создания эффективного описания исходной информации. Эффективное описание допускает снижение требований к памяти или полосе частот, связанных с хранением или передачей дискретных реализаций исходных данных. Для дискретных источников способность к созданию описаний данных со сниженной скоростью передачи зависит от информационного содержимого и статистической корреляции исходных символов. Для аналоговых источников способность к созданию описаний данных со сниженной скоростью передачи (согласно принятому критерию точности) зависит от распределения амплитуд и временной корреляции сигнала источника. Целью кодирования источника является получение описания исходной информации с хорошей точностью при данной номинальной скорости передачи битов или допуск низкой скорости передачи битов, чтобы получить описание источника с заданной точностью. Чтобы понять, где эффективны методы и средства кодирования источника, важно иметь общие меры исходных параметров. По этой причине в данном разделе изучаются простые модели дискретных и аналоговых источников, а затем дается описание того, как кодирование источника может быть применено к этим моделям.

13.1.1. Дискретные источники

Дискретные источники генерируют (или вьщают) последовательность символов Х(к), выбранную из исходного алфавита в дискретные промежутки времени кТ, где =1, 2, ... - счетные индексы. Если алфавит содержит конечное число символов, скажем Л, говорят, что источник является конечным дискретным (finite discrete source). Примером такого источника является выход 12-битового цифро-аналогового преобразователя (один из 4096 дискретных уровней) или выход 10-битового аналого-цифрового преобразователя (один из 1024 двоичных 10-кортежей) Еще одним примером дискретного источника может послужить последовательность 8-битовых ASCII-символов, введенных с клавиатуры компьютера.

Конечный дискретный источник определяется последоватсньностью символов (иногда называемых алфавитом) и вероятностью, присвоенной этим символам (или буквам). Будем предполагать, что источник кратковременно стационарный, т.е. присвоенные вероятности являются фиксированными в течение периода наблюдения. Пример, в котором алфавит фиксирован, а присвоенные вероятности изменяются, - это последовательность символов, генерируемая клавиатурой, когда кто-то печатает английский текст, за которым следует печать испанского и наконец французского текстов.

Если известно, что вероятность каждого символа Xj есть P(Xj), можно определить ссшоинформацию (self-information) I{Xj) для каждого символа алфавита.

l{X,) = -\ogj{p,) (13.1)

Средней самоинформацией для символов алфавита, называемой также энтропией источника (source entropy), является величина

ЩХ) = E[I(Xj)} = - Х Pv 1 laquo;82 iPj). (13.2)

7 = 1

822 Гпявя П Копиппвянир игтпчнирся



где Е{Х] - математическое ожидание X. Энтропия источника определяется как среднее количество информации на выход источника. Энтропия источника - это средний объем неопределенности, которая может быть разрешена с использованием алфавита. Таким образом, это среднее количество информации, которое должно быть отправлено через канал связи для разрешения этой неопределенности. Можно показать, что это количество информации в битах на символ ограничено снизу нулем, если не су-шествует неопределенности, и сверху 1о sect;2(Л0, если неопределенность максимальна.

О lt; ЩХ) lt; log2(A0 (13.3)

Пример 13.1. Энтропия двоичного источника

Рассмотрим двоичный источник, который генерирует независимые символы О и 1 с вероятностями р и (1 -р). Этот источник описан в разделе 7.4.2, а его функция энтропии представлена на рис. 7.5. Если р = 0,1 и (1 -р) = 0,9, энтропия источника равна следующему:

ЩХ) = -1р log2(p) + (1 -р) log2(l -р)] = (13.4)

= 0,47 бит/символ.

Таким образом, этот источник может быть описан (при использовании соответствующего кодирования) с помощью менее половины бита на символ, а не одного бита на символ, как в текущей форме.

Отметим, что первая причина, по которой кодирование источника работает, - это то, что информационное содержание Л-символьного алфавита, используемое в действительных системах связи, обычно меньше верхнего предела соотношения (13.3). Известно, что, как отмечено в примере 7.1, символы английского текста не являются равновероятными. Например, высокая вероятность конкретных букв в тексте используется как часть стратегии игры Хенгмана (Hangman). (В этой игре игрок должен угадывать буквы, но не их позиции в скрытом слове известной длины. За неверные предположения назначаются штрафы, а буквы всего слова должны быть определены до того, как произойдет шесть неверных предположений.)

Дискретный источник называется источником без памяти (memoryless), если символы, генерируемые источником, являются статистически независимыми. В частности, это означает, что их совместная вероятность двух символов является просто произведением вероятностей соответствующих символов.

PiXj,X,) = P(Xj\X )P(X ) = PiXj)P{X ) (13.5)

Следствием статистической независимости есть то, что информация, требуемая для передачи последовательности М символов (называемой Л/-кортежем) данного алфавита, точно в М раз превышает среднюю информацию, необходимую для передачи отдельного символа. Это объясняется тем, что вероятность статистически независимого Л/-кортежа задается следующим образом:

Р(Х Х2,...,Хд,) = ]Р(Х ). (13.6)

л = 1

Поэтому средняя на символ энтропия статистически независимого М-кортежа равна 13.1. Источники 823



= -У[-Р{Х )\0В2Р(Х]= . (13.7)

= ЩХ)

Говорят, что дискретный источник имеет память, если элементы источника, образующие последовательность, не являются независимыми. Зависимость символов означает, что для последовательности М символов неопределенность относительно М-го символа уменьшается, если известны предьщущие (М - 1) символов. Например, большая ли неопределенность существует для следующего символа последовательности CALIFORNI ? М-кортеж с зависимыми символами содержит меньше информации или разрешает меньше неопределенности, чем кортеж с независимыми символами. Энтропией источника с памятью является следующий предел:

Н{Х)= lim Нм(Х). (13.8)

Видим, что энтропия М-кортежа из источника с памятью всегда меньше, чем энтропия источника с тем же алфавитом и вероятностью символов, но без памяти.

с памятью ез памяти

(13.9)

Например, известно, что при данном символе (или букве) q в английском тексте следующим символом, вероятно, будет и . Следовательно, в контексте системы связи, если сказать, что буква и следует за буквой q , то это дает незначительную дополнительную информацию о значении слова, которое было передано. Можно привести и другой пример. Наиболее вероятным символом, следующим за буквами th , может быть один из таких символов: а, е, i, о, и, г и пробел. Таким образом, дополнение следующим символом данного множества разрешает некоторую неопределенность, но не очень сильно. Формальная формулировка сказанного выше: средняя энтропия на символ М-кортежа из источника с памятью убывает при увеличении длины М. Следствие: более эффективным является групповое кодирование символов из источника с памятью, а не кодирование их по одному. При кодировании источника размер последовательности символов, рассматриваемой как группа, ограничивается сложностью кодера, ограничениями памяти и допустимой задержкой времени.

Чтобы помочь понять цели, преследуемые при кодировании источников с памятью, построим простые модели этих источников. Одна из таких моделей называется Марковским источником первого порядка (first-order Markov source) [1]. Эта модель устанавливает соответствие между множеством состояний (или символов в контексте теории информации) и условными вероятностями перехода к каждому последующему состоянию. В модели первого порядка переходные вероятности зависят только от настоящего состояния. Иными словами, Р(Х,+ у\Х ...) = P(X,+ i\X,). Память модели не распространяется дальше настоящего состояния. В контексте двоичной последовательности это выражение описывает вероятность следующего бита при данном значении текущего бита.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 [ 265 ] 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358