www.chms.ru - вывоз мусора в Балашихе 

Динамо-машины  Сигналы и спектры 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 [ 27 ] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

и выходе отличаются сильнее, и мы говорим, что преобразователь работает в режиме насыщения. Ошибки насыщения значительнее и менее желательны, чем шум квантования. В общем случае насыщение устраняется путем автоматической регулировки усиления (automatic gain control - AGC), которая эффективно расширяет рабочий диапазон преобразователя. (Подробнее о насыщении устройства квантования в главе 13.)

2.5.1.3. Синхронизация случайного смещения

Наш анализ теоремы о дискретном представлении предсказывал точное восстановление сигнала на основе равномерно размещенных выборок. При наличии случайного смешения положения выборки, дискретизация уже не является равномерной. Если местоположения выборок точно известны, точное восстановление все еще возможно, но смещение - это обычно случайный процесс, так что заранее предсказать положения выборок нельзя. Воздействие смещения равносильно частотной модуляции видеосигнала. Если смещение является случайным, вносится низкоуровневый широкополосный спектральный вклад, характеристики которого весьма подобны свойствам шума квантования. Если смещение является периодическим, как, например, при считывании данных с магнитофона, то в данных появятся низкоуровневые спектральные линии. Управлять синхронизацией случайного смещения можно посредством развязки по питанию и использования кварцевых генераторов.

2.5.2. Воздействие канала

2.5.2.1. Шум канала

Тепловой шум, а также помехи со стороны других пользователей и коммутационного оборудования канала могут приводить к ошибкам в детектировании импульсов, представляющих оцифрованные выборки. Ошибки, индуцируемые каналом, могут достаточно быстро ухудшить качество восстанавливаемого сигнала. Быстрое ухудшение качества выходного сигнала за счет ошибок, индуцированных каналом, называется пороговым эффектом (threshold eflfect). Если шум канала мал, то проблем с детектированием сигнала не возникнет. Следовательно, небольшой шум не разрушает восстанавливаемые сигналы. В этом случае при восстановлении единственным шумом является шум квантования. С другой стороны, если шум канала достаточно велик, чтобы повлиять на нашу способность к детектированию сигналов, в результате полученная ошибка детектирования приводит к ошибкам восстановления. Пороговым данный эффект называется потому, что при небольших изменениях уровня щума канала поведение сигнала может измениться довольно сильно.

2.5.2.2. Межсимвольная интерференция

Канал всегда имеет офаниченную полосу пропускания. Канал с офаниченной полосой всегда искажает или расширяет импульсный сигнал, проходящий через него (см. раздел 1.6.4). Если ширина полосы канала значительно больше ширины полосы импульса, импульс искажается незначительно. Если же ширина полосы канала приблизительно равна ширине полосы сигнала, то искажение будет превышать длительность передачи символа и приведет к наложению импульсов сигнала. Этот эффект называется межсимволы1ой интерференцией (intersymbol interference - ISI). Как и любой другой источник интерференции, 1SI приводит к ухудшению качества передачи (повышению уровня ошибок); к тому же эта форма интерференции особенно болезненна, поскольку повышение мощности сигнала для преодоления интерференции не всегда улучшает достоверность передачи. (Подробнее о методах борьбы с межсимвольной интерференцией см. в разделах 3.3 и 3.4.)

2.5. Источники искажения 105



2.5.3. Отношение сигнал/шум для квантованных импульсов

Рассмотрим рис. 2.15, на котором изображено L-уровневое устройство квантования аналогового сигнала с полным диапазоном напряжений, равным Vpp= Vp-(-Vp)= 2Vp В. Как показано на рисунке, квантованные импульсы могут иметь положительные и отрицательные значения. Шаг между уровнями квантования, называемый интервалом квантования, составляет q вольт. Если уровни квантования равномерно распределены по всему диапазону, устройство квантования именуется равномерным, или линейным. Каждое дискретное значение аналогового сигнала аппроксимируется квантованным импульсом: аппроксимация дает ошибку, не превышающую qJ2 в положительном направлении или -q/2 в отрицательном. Таким образом, ухудшение сигнала вследствие квантования ограничено половиной квантового интервала, plusmn;q/2 вольт.

Квантованные величины

Vp

Vp-ci/г

Vp-3q/2

q вольт

5q/2-3q/2-q/2--q/2--3q/2--5q/2

Lуровней

-vp + 3qr/2. -Vp-q/2 . -v -----

Puc. 2 15. Уровни квантования

Хорошим критерием качества равномерного устройства квантования является его дисперсия (среднеквадратическая ошибка при подразумеваемом нулевом среднем). Если считать, что ошибка квантования, е, равномерно распределена в пределах интервала квантования шириной q (т. е. аналоговый входной сигнал принимает все возможные значения с равной вероятностью), то дисперсия ошибок для устройства квантования составляет

+?/2

ер(е) de =

-ql2

(2.18,а)

+4/2 .

-12

(2.18,6)

где р(е) = \lq - (равномерно распределенная) плотность вероятности возникновения ошибки квантования. Дисперсия, с, соответствует средней мощности шума квантова-



имя. Пиковую мощность аналогового сигнала (нормированную на 1 Ом) можно выразить как

(2.19)

где L - число уровней квантования. Объединение выражений (2.18) и (2.19) дает отнощение пиковой мощности сигнала к средней мощности квантового щума {SIN)g.

= ЗL (2.20)

где - средняя мощность шума квантования. Очевидно, что отношение {SIN)g квадратично растет с числом уровней квантования. В пределе (L-*oo) сигнал становится аналоговым (бесконечное число уровней квантования и нулевой шум квантования). Отметим, что для случайных сигналов в параметр (S/ЛО, входит не максимальная, а средняя мощность сигнала. В этом случае для получения средней мощности сигнала требуется знать функцию плотности вероятности.

2.6. Импульсно-кодовая модуляция

Импульсно-кодовая модуляция (pulse-code modulation - РСМ) - это название, данное классу низкочастотных сигналов, полученных из сигналов РАМ путем кодирования каждой квантованной выборки цифровым словом [3]. Исходная информация дискретизируется и квантуется в один из L уровней; после этого каждая квантованная выборка проходит цифровое кодирование для превращения в /-битовое (/ = log2 L) кодовое слово. Для низкочастотной передачи биты кодового слова преобразовываются в импульсные сигналы Рассмотрим рис 2.16, на котором представлена бинарная импульсно-кодовая модуляция. Предположим, что амплитуды аналогового сигнала x(f) ограничены диапазоном от -Л до +4 В. Шаг между уровнями квантования составляет 1 В. Следовательно, используется 8 квантовых уровней; они расположены на -3,5, -2,5, +3,5 В. Уровню -3,5 В присвоим кодовый номер О, уровню -2,5 - 1 и так до уровня 3,5 В, которому присвоим кодовый номер 7. Каждый кодовый номер имеет представление в двоичной арифметике - от ООО для кодового номера О до 111 для кодового номера 7. Почему уровни напряжения выбраны именно так, а не с использованием набора последовательных чисел 1, 2, 3, ...? На выбор уровней напряжения влияют два ограничения. Во-первых, интервалы квантования между уровнями должны быть одинаковыми; и, во-вторых, удобно, чтобы уровни были симметричны относительно нуля.

На оси ординат (рис. 2.16) отложены уровни квантования и их кодовые номера. Каждая выборка аналогового сигнала аппроксимируется ближайшим уровнем квантования. Под аналоговым сигналом x{t) изображены четыре его представления: значения выборок в естественной дискретизации, значения квантованных выборок, кодовые номера и последовательность РСМ.

Отметим, что в примере на рис. 2.16 каждая выборка соотнесена с одним из восьми уровней или трехбитовой последовательностью РСМ.

2.6. Импульсно-кодовая модуляция 107



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 [ 27 ] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358