www.chms.ru - вывоз мусора в Балашихе 

Динамо-машины  Сигналы и спектры 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 [ 271 ] 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

шум квантования. Этому можно дать достаточно простое объяснение, изучив мгновенную характеристику ошибки (как показано на рис. 13.4) и отметив, что ошибки насыщения очень велики в сравнении с ошибками квантования. Таким образом, малое насыщение, даже если оно случается нечасто, будет вносить большой вклад в средний уровень шума квантующего устройства.

Шум насыщения и шум квантования отличаются несколько по-иному. Шум квантования приближается к белому шуму. По этой причине к аналоговому сигналу до квантования могут намеренно добавляться сигналы псевдослучайного шума. Отметим, что шум насыщения подобен белому шуму только тогда, когда входной сигнал имеет широкую полосу частот и может быть гармонически связанным с входным сигналом, если тот имеет узкую полосу частот. Таким образом, влияние шума квантования может быть отфильтровано или усреднено, так как по характеристикам - это белый шум. С другой стороны, шум насыщения неотличим от содержимого полезного сигнала и в общем случае не может быть устранен с помощью последовательного усреднения или фильтрующих технологий.

На рис. 13.9 представлены дискретные преобразования Фурье того же сигнального множества, что и на рис. 13.8, квантованного 10-битовым АЦП. Кроме того, на рис. 13.9 пиковая амплитуда сигнала выбрана так, чтобы на 10% (0,83 дБ) превышать уровень насыщения АЦП. Отметим, что очень много спектральных артефактов вызываются шумом насыщения. Количество этих артефактов (шум насыщения) будет возрастать еще больше, когда отклонения сигнала будут идти глубже в режим насыщения. Чтобы увидеть существенную разницу во влиянии слишком слабого поглощения сигнала (следовательно, имеем насыщение) на выход шума АЦП, сравните этот рисунок с рис. 13.7.

100 о

-100

10-битовое квантование с добавлением псевдослучайного шума, 0,8 дБ сверх насыщения


О 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 Нормированная частота

Рис. 13.9. Энергетический спектр равномерно квантованных сигналов с насыщением квантующего устройства на пиках сигнала в 0,8 дБ вне полномасштабного входного уровня



13.2.4. Добавление псевдослучайного шума

Добавление псевдослучайного шума представляет собой одно из самых разумных применений шума как полезного инженерного инструмента. Псевдослучайный шумовой сигнал - это небольшое возмущение или помеха, добавленные к измеряемому процессу, чтобы ограничить влияние малых локальных нелинейностей. Наиболее знакомой формой псевдослучайного шума является встряхивание компаса перед собственно его использованием. В данном случае имеем последовательность малых импульсов, применяемую для вывода движения стрелки из локальной области, которая имеет нелинейный коэффициент трения при малых скоростях. Более сложным примером того же эффекта является механическое псевдослучайное возмущение, применяемое к вращающимся лазерным лучам лазерного лучевого гироскопа с целью вывода гироскопа из ловушки низкоуровневой частоты, известной как мертвая полоса [3].

В случае аналого-цифрового преобразователя цель псевдослучайного шума - ограничить (или избежать) локальные разрывы (т.е. подъемы и ступени) мгновенной передаточной функции входа/выхода. Чтобы лучше представить себе влияние этих разрывов, можно перечислить ожидаемые свойства ошибочной последорательности, образованной процессом квантования, с последующим изучением действительных свойств той же последовательности. Ошибочная последовательность квантующего устройства моделируется как аддитивный шум. Давайте рассмотрим ожидаемые свойства такой последовательности шума.

1. Нулевое среднее

2. Белый шум

3. Отсутствие корреляции с данными х(п)

Ще(п)} = 0

Е{ф)ф + /и)} =а5(/и) Е{е{п)х(п + т)} =0

В данном случае тип - выборочные индексы, 5(/и) - дельта-функция Дирака. Изучение рис. 13.10, на котором представлена последовательность выборок, образованная усекающим АЦП, позволяет сделать следующие наблюдения.

выборТа Выборка квантования

Разрешимые уровни квантования


Сигнал

Рис. 13.10. Последовательность дискретных данных квантуется в ближайшие наименьшие уровни квантили посредством присвоенной ошибочной последовательности

1. Вся ошибочная последовательность имеет одну и ту же полярность; следовательно, ее среднее не равно нулю.

2. Последовательность не является независимой при переходе от выборки к выборке; следовательно, она не является белым шумом.

3. Последовательность ошибки коррелирует с входом; следовательно, она не является независимой.



Повторяющиеся измерения того же сигнала будут давать в результате тот же щум, и, таким образом, усреднение ни по какому числу измерений не уменьшит отклонение от истинного входного сигнала. Парадоксально, но мы хотели бы видеть этот щум более щумным . Если щум является независимым на последовательных измерениях, усреднение будет сокращать отклонение от истинных значений. Таким образом, столкнувшись с проблемой, что получаемый шум не является тем шумом, который нам необходим, выбираем возможность изменить этот шум, добавляя к нему наш собственный. Измерения дополняются возмущением, чтобы превзойти нежелательный низкоуровневый шум устройства квантования. Дополненное возмущение в известном смысле преобразует плохой шум в хороший [4].

Пример 13.5. Линеаризация с помощью псевдослучайного шума

Предположим, рассматриваются квантующие устройства, которые могут измерять только целые величины и превращать входные данные в наименьшие ближайшие целые - процесс, назьшае-мый усечением. Сделано 10 измерений сигнала, скажем, амплитуды 3,7. При отсутствии добаюч-ного сигнала все замеры равны 3,0. Теперь перед измерениями добавим к входной последовательности равномерно распределенную (на интервале от О до 1) случайную числовую последовательность. Последовательность данных имеет следующий вид.

Измерение Необработан- Квантованный Псевдослу- Суммарный Квантованный

ный сигнал

необработанный

чайный шум

сигнал

суммарный

сигнал

сигнал

0,3485

4,0485

0,8685

4,5685

0,2789

3,9789

0,3615

4,0615

0,1074

3,8074

0,2629

3,9629

0,9252

4,6252

0,5599

4,2599

0,3408

4,0408

0,5228

4,2228

Средние =

0,4576

4,1576

Среднее псев-

0,4576

дослучайного

шума

Среднее сум- 3,7

марного сигнала - среднее псевдослучайного шума

В этом примере для удаления смещения квантующего устройства был использован смещенный псевдослучайный шум. Среднее суммированных и преобразованных измерений (при наличии корректного измерения) в общем случае будет ближе к истинному сигналу, чем не-суммированные с псевдослучайным шумом и преобразованные измерения [5, 6].

Чтобы проиллюстрировать влияние процесса добавления псевдослучайного щума на процесс квантования изменяющегося во времени сигнала, рассмотрим следующий эксперимент. Пусть синусоидальный сигнал, имеющий амплитуду 1,0, подавляется на 60 дБ. Тогда ослабляемый сигнал имеет полную амплитуду 0,001, что составляет примерно половину интервала квантования, равного 0,001957, для десятибитового равномерного устройства квантования (получается делением удвоенной амплитуды сигнала 2 на 2 - 2). Когда на округляющее квантующее устройство подается ослабленная синусоида, на выходе будут получаться в основном все нули, за исключением отдельных единиц в +1 квантиль, что происходит в том случае, когда



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 [ 271 ] 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358