www.chms.ru - вывоз мусора в Балашихе 

Динамо-машины  Сигналы и спектры 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 [ 275 ] 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

сжатия А- и ц-законов является то, что стандарт А-закона имеет характеристику с нулем на границе шага квантования, в то время как стандарт ц-закона - характеристику с нулем в центре шага квантования. Таким образом, компрессор с А-законом не имеет нулевого значения, и следовательно, для него не сушествует интервала, на котором бы при нулевом входе не передавались данные.

Существует прямое отображение из формата АЦП, использующего 8-битовое сжатие с А-законом, в 12-битовый линейный двоичный код и из формата 8-битового сжатия с ц-законом в 13-битовый линейный код [8]. Эта операция позволяет преобразование аналоговой информации в цифровую с помощью равномерного устройства квантования с последующим отображением в меньшее число бит в кодовом преобразователе. Кроме того, это позволяет обратное отображение в приемнике (т.е. расширение) производить на числовой выборке.

Импульсно-кодовая модуляция. Одной из задач, выполняемых в ходе импульсно-кодовой модуляции (pulse-code modulation - РСМ), является преобразование исходных сигналов в дискретные двоичные последовательности. Эта задача производится с помощью трехэтапного процесса - дискретизации, квантования и кодирования. Процесс дискретизации изучался в главе 2, а процесс квантования - в данной главе и в главе 2. Отметим, что процесс кодирования, следующий за квантованием (см. рис. 2.2), часто воплощается на аппаратном уровне и выполняется тем же устройством, что и квантование. Вообще, процесс может быть описан следующим образом: последовательная аппроксимация аналого-цифровых преобразователей образует последовательные биты декодированных данных с помощью обратной связи, сравнения и процесса принятия решения. В процессе обратной связи постоянно задается вопрос, входной сигнал находится выше или ниже средней точки остаточного интервала неопределенности. С помощью этой технологии интервал неопределенности сокращается до половинного на каждом шаге сравнения и принятия решения до тех пор, пока интервал неопределенности не совпадет с допустимым интервалом квантования.

При последовательной аппроксимации результат каждого предыдущего решения снижает неопределенность, которая должна быть разрешена во время следующего преобразования. Аналогично результаты предшествующих преобразований аналоговой информации в цифровую могут использовать для уменьшения неопределенности, которая должна быть разрешена во время следующего преобразования. Эта редукция неопределенности достигается путем передачи каждой последующей выборке вспомогательной информации из более ранних выборок. Эта информация называется избыточной частью сигнала, и с помощью ее передачи сокращается интервал неопределенности, в котором квантующее устройство и кодер должны вести поиск следующей выборки сигнала. Передача данных - это один из методов, с помощью которых достигается снижение избыточности.

13.3. Дифференциальная импульсно-кодовая модуляция

Используя прошлые данные для измерения (т.е. квантования) новых переходим от обычной импульсно-кодовой модуляции (pulse-code modulation - РСМ) к дифференциальной (differential РСМ - DPCM). В DPCM предсказание следующего выборочного значения формируется на основании предыдущих значений. Для квантующего устройства это предсказание можно рассматривать в качестве инструкции по руководству при поиске следующего выборочного значения в конкретном интервале. Если для предсказания используется избыточность сигнала, область неопределенности со-



кращается и квантование можно проводить с уменьшенным числом решений (или бит) для данного уровня квантования или с уменьшенным числом уровней квантования для данного числа решений (или бит). Сокращение избыточности реализуется путем вычитания предсказания из следующего выборочного значения. Эта разность называется ошибкой предсказания (prediction error).

Устройства квантования, описанные в разделе 13.2, называются мгновенными устройствами квантования или устройствами квантования без памяти, так как цифровые преобразования основаны на единичной (текущей) входной выборке. В разделе 13.1 были определены свойства источников, которые допускают сокращение интенсивности источника. Этими свойствами бьши неравновероятные уровни исгочника и зависимые выборочные значения. Мгновенные квантующие устройства кодируют источник, принимая во внимание плотность вероятности, сопоставленную с каждой выборкой. Методы квантования, которые принимают во внимание корреляцию между выборками, являются квантующими устройствами с памятью. Эти квантующие устройства уменьшают избыточность источника сначала посредством превращения коррелированной входной последовательности в связанную последовательность с уменьшенной корреляцией, уменьшенной дисперсией и уменьшенной полосой частот. Затем эта новая последовательность квантуется с использованием меньшего количества бит.

Корреляционные характеристики источника можно представить во временной области с помощью выборки его автокорреляционной функции и в частотной области - его спектром мощности. Если изучается спектральная мощность G(/) кратковременного речевого сигнала, как изображено на рис. 13.18, то видим, что спектр имеет глобальный максимум в окрестности от 300 до 800 Гц и убывает со скоростью от 6 до 12 дБ/октаву. Изучая этот спектр, можно взглянуть на определенные свойства временной функции, из которой он получен. Видим, что большие изменения сигнала происходят медленно (низкая частота), а быстрые (высокая частота) должны иметь малую амплитуду. Эквивалентная интерпретация может быть дана в терминах автокорреляционной функции сигнала RT), как изображено на рис. 13.19. Здесь широкая, медленно меняющаяся автокорреляционная функция свидетельствует о том, что при переходе от выборки к выборке будет только слабое изменение и что для полного изменения амплитуды требуется временной интервал, превышающий интервал корреляции. Интервал (или радиус) корреляции, рассмотренный на рис. 13.19, является временной разностью между максимальной и первой нулевой корреляцией. В частности, значение корреляции для типичного единичного выборочного запаздывания лежит в диапазоне примерно от 0,79 до 0,87, а радиус корреляции имеет порядок от 4 до 6 выборочных интервалов, равных Т секунд на интервал.

Поскольку разность между соседними временными выборками для речи мала, используемый метод кодирования базируется на передаче от выборки к выборке разностей, а не действительных выборочных значений. В действительности, последовательные разности представляют собой частный случай класса преобразователей с памятью, называемых УУ-отводными линейными кодерами с предсказанием. Эти кодеры, иногда именуемые кодерами с предсказаниями и поправками, предсказывают следующее входное выборочное значение на основании предьщущих входных выборочных значений. Эта структура показана на рис. 13.20. В этом типе преобразователя передатчик и приемник имеют одинаковую модель предсказания, которая получена из корреляционных характеристик сигнала. Кодер дает ошибку предсказания (или остаток) как разность между следующим измеренным и предсказанным выборочными значениями. Математически контур предсказания описывается следующим образом:

1.3 3 nwfhfhonou




Высокая частота, малая амплитуда

а 100

300 1000 3000 Частота(Гц)

10000

Рис. 13.18. Типичная спектральная мощность для речевых сигналов


Рис. 13.19. Автокорреляционная функция для типичных речевых сигналов

Кодер

Декодер

сЦп)

Устройство квантования

d(n)

Контур предсказания-сравнения

х{п)

W-отводный предсказатель

d(n)

Коррекция

х{п)

N-отводный предсказатель

-х{п)

Контур предсказания-коррекции

Предсказание

Цп) = х{п) + а{п)

Рис. 13.20. N-отводный дифференциальный импульсно-кодовый модулятор с предсказанием

d(n) = xin)-iin),

где х(п) - и-я входная выборка, х{п) - предсказанное значение выборки, а d(n) - соответствующая ошибка предсказания. Эта операция производится в контуре пред-



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 [ 275 ] 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358