www.chms.ru - вывоз мусора в Балашихе 

Динамо-машины  Сигналы и спектры 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 [ 30 ] 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

) 1 1

Интервал передачи

Интервал передачи кодового слова

1 1

+V 0--V -

О Т 2Т ЗТ 4Т 5Т 6Г 7Г 8Т 9Г ЮГ ИГ

Рис. 2.21 Пример представления двоичных цифр в форме сигналов: а) последователыюсть РСМ; б) импулы;ное представление последователы1ости РСМ; в) импулы:ный сигнал (переход между двумя уровнями)

При применении импульсной модуляции к недвоичному символу получаем сигнал, называемый М-арным импулы:но-модулированным; существует несколько типов таких сигналов. Описываются они в разделе 2.8.5, особое внимание уделяется амплитудно-импульсной модуляции (pulse-amplitude modulation - РАМ). На рис. 2.1 в вьщеленном блоке Передача видеосигналов показана базовая классификация сигналов РСМ и М-арных импульсных сигналов. Сигналы РСМ делятся на четыре группы.

1. Без возврата к нулю (nonreturn-to-zero - NRZ)

2. С возвратом к нулю (return-to-zero - RZ)

3. Фазовое кодирование

4. Многоуровневое бинарное кодирование

Самыми используемыми сигналами РСМ являются, пожалуй, сигналы в кодировках NRZ. Группа кодировок NRZ включает следующие подгруппы: NRZ-L (L = level - уровень), NRZ-M (М = mark - метка) и NRZ-S (S = space - пауза). Кодировка NRZ-L (nonreturn-to-zero level - без возврата к нулевому уровню) широко используется в цифровых логических схемах. Двоичная единица в этом случае представляется одним уровнем напряжения, а двоичный нуль - другим.



NRZ-L

NRZ-M

NRZ-S

-V -V -V

Униполярная RZ

Биполярная RZ 0 -V

RZ-AMI

В-ф-1 Bi-ф-М В-ф-3

Модуляция задержки

Дикодная NRZ

О -V

*V -V

-V +V

1 0 1 1 0 0 0 1 1 0 1

IJllIJJllJl

-.111

Дикодная RZ 0 -V

0 T 2T ZT ЛТ 5T 6Г IT 8Г 9Г10Г Puc. 2.22. Различные сигналы PCM

Изменение уровня происходит всякий раз при переходе в последовательности передаваемых битов от нуля к единице или от единицы к нулю. При использовании кодировки NRZ-M двоичная единица, или метка (mark), представляется изменением уровня, а нуль, или пауза (space), - отсутствием изменения уровня. Такая кодировка часто называется дифференциальной. Применяется кодировка NRZ-M преимущественно при записи на магнитную ленту. Кодировка NRZ-S является обратной к кодировке NR2-M: двоичная единица представляется отсутствием изменения уровня, а двоичный нуль - изменением уровня.

Группа кодировок RZ включает униполярную кодировку RZ, биполярную кодировку RZ и кодировку RZ-AMI. Эти коды применяются при низкочастотной передаче данных и магнитной записи. В униполярной кодировке RZ единица представляется наличием импульса, длительность которого составляет половину щирины бита, а



нуль - его отсутствием. В биполярной кодировке RZ единицы и нули представляются импульсами противоположных уровней, длительность каждого из которых также составляет половину ширины бита. В каждом интервале передачи бита присутствует импульс. Кодировка RZ-AMI (AMI = alternate mark inversion - с чередованием полярности) - это схема передачи сигналов, используемая в телефонных системах. Единицы представляются наличием импульсов равных амплитуд с чередующимися полярностями, а нули - отсутствием импульсов.

Группа фазового кодирования включает следующие кодировки: Ы-ф-Ь (bi-phase-level - двухфазный уровень), более известная как манчестерское кодирование (Manchester encoding); bi-ф-М (bi-phase-mark); Ы-ф-В (bi-phase-space); и модуляция задержки (delay modulation - DM), или кодировка Миллера. Схемы фазовых кодировок используются в системах магнитной записи и оптической связи, а также в некоторых спутниковых телеметрических каналах передачи данных. В кодировке Ы-ф-Ь единица представляется импульсом, длительностью в половину ширины бита, расположенным в первой половине интервала передачи бита, а нуль - таким же импульсом, но расположенным во второй половине интервала передачи бита. В кодировке bi-ф-М в начале каждого интервала передачи бита происходит переход. Единица представляется вторым переходом в середине интервала, нуль - единственным переходом в начале интервала передачи бита. В кодировке Ь1-ф-8 в начале каждого интервала также происходит переход. Единица представляется этим единственным переходом, а для представления нуля необходим второй переход в середине интервала. При модуляции задержки [4] единица представляется переходом в середине интервала передачи бита, а нуль - отсутствием иных переходов, если за ним не следует другой нуль. В последнем случае переход помещается в конец интервала передачи первого нуля. Приведенные объяснения станут понятнее, если обратиться к рис. 2.22.

Многие двоичные сигналы для кодировки двоичных данных используют три уровня, а не два. К этой фуппе относятся сигналы в кодировках RZ и RZ-AMI. Кроме того, сюда входят схемы, называемые дикодной (dicode) и двубинарной кодировкой (duobinary). При ди-кодной кодировке NRZ переходы в передаваемой информации от единицы к нулю и от нуля к единице меняют полярность импульсов; при отсутствии переходов передается сигнал нулевого уровня. При дикодной кодировке RZ переходы от единицы к нулю и от нуля к единице вызывают изменение полярности, длительностью в половину интервала импульса; при отсутствии переходов передается сигнал нулевого уровня. Подробнее трехуровневые двубинарные схемы передачи сигналов рассмотрены в разделе 2.9.

Может возникнуть вопрос, почему так много различных сигналов РСМ? Неужели так много уникальных приложений требуют разнообразных кодировок для представления двоичных цифр? Причина такого разнообразия заключается в отличии производительности, которая характеризует каждую кодировку [5]. При выборе кодировки РСМ внимание следует обращать на следующие параметры.

1. Постоянная составляющая. Удаление из спектра мощностей постоянной составляющей позволяет системе работать на переменном токе. Системы магнитной записи или системы, использующие трансформаторную связь, слабо чувствительны к гармоникам очень низких частот. Следовательно, существует вероятность потери низкочастотной информации.

2. Автосинхронизация. Каждой системе цифровой связи требуется символьная или битовая синхронизация. Некоторые кодировки РСМ имеют встроенные функции синхронизации, помогающие восстанавливать синхронизирующий сигнал. Например, манчестерская кодировка включает переходы в середине каждого интер-



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 [ 30 ] 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358