www.chms.ru - вывоз мусора в Балашихе 

Динамо-машины  Сигналы и спектры 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 [ 319 ] 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

сигнала в точке хо не дает никакой информации о сигнале в точке хо + (,. Отметим также, что при данной скорости это смешение без труда преобразуется во время (время когерентности).

15.4.1.1. Независимость основных проявлений замирания

Для движущейся антенны замирание raquo; принятого несущего сигнала обычно рассматривается как случайный процесс, даже если замирание может быть полностью предопределено, исходя из расположения рассеивающих элементов и геометрии распространения между передатчиком и принимающей антенной. Это объясняется тем, что один и тот же сигнал, принятый двумя антеннами, разнесенными, по крайней мере, на 0,4Х, статистически не коррелирует [17, 18]. Поскольку такие малые расстояния (порядка 13 см для несущей 900 МГц) соответствуют статистической декорреляции принятых сигналов, основные проявления замирания, дисперсия сигнала и скорость замирания, могут рассматриваться независимо друг от друга. Здесь нам может помочь любой из случаев, изображенных на рис. 15.10. В каждый момент времени (соответствующий некоторому пространственному размещению) видим профиль интенсивности многолучевого распространения 5(т) как функцию задержки т. Профили многолучевого распространения изначально определяются местностью (строения, растительность и т.д.). Рассмотрим рис. 15.10, б, где стрелочкой, помеченной время (можно было также пометить как смещение антенны), указано направление движения через области с различными профилями многолучевого распространения. При движении мобильного радиопередатчика к новому пространственному положению, которое характеризуется иным профилем, будут происходить изменения в состоянии замирания канала, как обуславливает профиль в новом местоположении. Однако вследствие того, что один профиль декоррелирует с другим уже на расстоянии порядка 13 см (для несущей 900 МГц), скорость таких изменений зависит только от скорости движения, но не от общей геометрии местности.

15.4.1.2. Понятие дуальности

Математическому понятию дуальности (duality) можно дать следующее определение: два процесса (функции, элемента или системы) дуальны друг другу, если математические соотношения между ними остаются одинаковыми с точностью до замены параметров. В этой главе интересно отметить дуальность при изучении соотношений во временной области по сравнению с соотношениями в частотной области.

Из рис. 15.8 можно определить функции, которые ведут себя одинаково в разных областях. Для понимания модели канала с замираниями рассмотрим дуальные функции (duals). Например, явление дисперсии сигнала можно описать в частотной области с помощью функции R(Af), как это показано на рис. 15.8, б. Эта функция несет в себе информацию о диапазоне частот, в котором два спектральных компонента полученного сигнала имеют большего вероятность амплитудной и частотной корреляции. Скорость замирания во временной области описывается функцией R(At), как это показано на рис. 15.8, в. Эта функция несет в себе информацию об интервале времени, в течение которого два полученных сигнала имеют большего вероятность амплитудной и фазовой корреляции. На рисунке эти две корреляционные функции, Л(Л и Л(Дг), помечены как дуальные. Это отмечено также на рис. 15.1, где дуальными названы блоки 10 и 13, и на рис. 15.7, где дуальны механизм расширения во времени в частотной области и механизм нестационарности во временной области.

Uo/-ro...........-------------------------------- - -



15.4.1.3. Категории ухудшения качества передачи вследствие

нестационарного поведения канала, рассматриваемого во временной области

Нестационарную природу, или механизм скорости замирания в канале, можно рассматривать с позиции категорий ухудшения качества передачи, указанных на рис. 15.7, - быстрого и медленного замирания. Термин быстрое замирание (fast fading) используется для описания каналов, в которых Tq lt; Т, где Гц - время когерентности канала, а - длительность символа. Быстрое замирание описывает условие, когда временной интервал, в течение которого поведение канала имеет корреляционный характер, мал по сравнению со временем, необходимым для передачи символа. Таким образом, можно ожидать, что характер замирания в канале будет изменяться несколько раз за время передачи символа, что приведет к искажению вида видеоимпульса. Данное искажение аналогично описанному ранее, которое вызывается внесенной каналом ISI, поскольку принятые компоненты сигнала не сильно коррелируют во времени. Поэтому быстрое замирание может искажать видеоимпульс, что, как правило, приводит к частому появлению неустранимых ошибок. Такие искаженные импульсы вызывают проблемы синхронизации (сбои в работе приемников, используюших фазовую автоподстройку частоты). Кроме того, сушествуют трудности, связанные с адекватной разработкой согласованного фильтра.

Обычно говорят, что канал вносит медленное замирание (slow fading), если То gt; т;. Здесь временной интервал, в течение которого поведение канала имеет корреляционный характер, велик по сравнению со временем, необходимым для передачи символа. Следовательно, можно ожидать, что состояние канала будет оставаться практически неизменным в течение времени передачи символа. Распространяюшиеся символы, вероятнее всего, не пострадают в результате искажений импульса, описанных ранее. Основное ухудшение качества передачи в канале с медленным замиранием, как и в случае с амплитудным замиранием, связано с уменьшением SNR.

15.4.2. Нестационарное поведение канала, рассматриваемое в области доплеровского сдвига

Аналогичная характеристика нестационарной природы канала может быть представлена в области доплеровского сдвига (частот). На рис. 15.8, г показана доплеровская спектральная плотность моиности (или доплеровский спектр) 5(v), изображенная в виде функции от доплеровского сдвига частот, v. Для модели с плотным размешением рассеиваюших элементов, вертикальной принимаюшей антенной с постоянным азимутальным усилением, однородным угловым распределением входного сигнала по всем углам в интервале (О, 2п) и немодулированным непрерывным сигналом спектр сигнала в точках приема будет иметь следующий вид:

5(v)=-

(15.24)

Равенство сохраняется для сдвига частот v, находящегося в интервале ifj, в окрестности несущей частоты f; за пределами этого интервала оно обращается в нуль. Профиль радиочастотного доплеровского спектра, который описывается уравнением (15.24), имеет классическую форму чаши, что видно из рис. 15.8, г. Следует заметить, что профиль спектра

Гппоп Ш Кяызпы г ЧЙМИПЯНИЯМИ



является результатом принятия модели канала с плотным размещением рассеивающих элементов. Уравнение (15.24) было введено для согласования экспериментальных данных, собранных для каналов мобильной радиосвязи [22]; однако для разных приложений профили спектра различны. Например, модель с плотным размещением рассеивающих элементов несправедлива для каналов радиосвязи внутри помещений; модель канала для областей внутри помещения предполагает, что 5(v) является равномерным спектром [23].

На рис. 15.8, г заостренность и крутизна фаниц спектра доплеровских частот является следствием резкого верхнего предела доплеровского сдвига, вызванного перемещением передвижной антенны среди стационарных рассеивающих элементов в модели плотного размещения. Наибольщая величина (бесконечность) 5(v) соответствует случаю, когда рассеивающий элемент находится прямо перед движущейся платформой антенны или прямо позади нее. В этом случае величина сдвига частот описывается формулой

/rf=Y (15.25)

где V - относительная скорость, а X - длина волны сигнала. Если передатчик и приемник движутся навстречу друг другу, то положительна, а если они удаляются друг от друга, то fi офицательна. Что касается рассеивающих элементов, находящихся в направлении поперечного излучения движущейся платформы, то для них величина частотного сдвига равна нулю. Отметим, что хотя доплеровские компоненты, поступивщие точно под углами 0 deg; и 180 deg;, имеют бесконечно больщую спектральную плотность мощности, это не представляет проблемы, поскольку угол имеет непрерывное распределение, а вероятность поступления компонентов точно под этими углами равна нулю [1, 18].

5(v) является Фурье-образом Л(Дг). Известно, что Фурье-образ автокорреляционной функции временного ряда равен квадрату амплитуды Фурье-образа исходного временного ряда. Следовательно, измерения могут проводиться просто путем передачи синусоиды (узкополосный сигнал) и с использованием Фурье-анализа для получения спектра мощности принятой амплитуды [15]. Этот доплеровский спектр мощности канала дает информацию о спектральном расщирении переданной синусоиды (импульса в частотной области) в области доплеровского сдвига. Как показано на рис. 15.8, функцию 5(v) можно рассматривать как дуальную профилю интенсивности многолучевого распросфанения 5(т), поскольку последняя несет информацию о расщирении во времени переданного импульса в области задержки. Это также отмечено на рис. 15.1 в виде дуальности между блоками 7 и 16, а на рис. 15.7 - между механизмом расщирения во времени в области задержки и механизмом нестационарного поведения канала в области доплеровского смещения.

Знание 5(v) делает возможным приблизительное вычисление величины расщирения спектра как функции скорости изменения состояний канала. Ширина доплеровского спекфа мощности (обозначенная ) в литературе называется по-разному: доплеровское расширение (Doppler spread), скорость замирания (fading rate), ширина полосы замирания (fading bandwidth) или спектральное расширение (spectral broadering). Уравнение (15.25) описывает доплеровский сдвиг частоты. В обычной для многолучевого распросфанения окружающей среде полученный сигнал движется по нескольким отраженным путям, каждый из которых имеет отличные от других расстояние и угол поступления. Доплеровский сдвиг для каждого из путей поступления сигнала, как правило, различен. Воздействие на полученный сигнал, как правило, проявляется в виде доплеровского расщирения переданной частоты сигнала, а не как сдвиг. Нужно помнить, что доплеровское расширение fa и время когерентности То обратно пропор-

15.4. НеПТЯ! 1ИПНЯП1-1ПР ППттимо iQt-iQ по э/ gt;плП-.то1лл noiMrCLii.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 [ 319 ] 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358