www.chms.ru - вывоз мусора в Балашихе 

Динамо-машины  Сигналы и спектры 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 [ 32 ] 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

соответствующую значению символа. Для кодировок РРМ и PDM амплитуда импульса фиксируется. Стоит отметить, что низкочастотные модуляции с использованием импульсов имеют аналоги среди полосовых модуляций. Кодировка РАМ подобна амплитудной модуляции, тогда как кодировки РРМ и PDM подобны, соответственно, фазовой и частотной модуляциям. В данном разделе мы рассмотрим только М-арные сигналы РАМ и сопоставим их с сигналами РСМ.

Полоса пропускания, необходимая для двоичных цифровых сигналов, таких как сигналы в кодировке РСМ, может быть очень большой. Как сузить требуемую полосу? Одна из возможностей - использовать многоуровневую передачу сигналов. Рассмотрим двоичный поток со скоростью передачи данных R бит/секунду. Чтобы не передавать импульсные сигналы для каждого отдельного бита, можно вначале разделить данные на Л-битовые группы, после чего использовать для передачи (Af = 2)-уровневые импульсы. При такой многоуровневой передаче сигналов, или Л/-арной амплитудно-импульсной модуляции, каждый импульсный сигнал может теперь представлять Л-битовый символ в потоке символов, перемещающемся со скоростью RIk символов в секунду (в к раз медленнее, чем поток битов). Следовательно, при данной скорости передачи данных для уменьшения числа символов, передаваемых в секунду, может использоваться многоуровневая (Af gt; 2) передача сигналов; другими словами, при уменьшении требований к ширине полосы передачи может применяться не двоичная кодировка РСМ, а Af-уровневая кодировка РАМ. Чем мы платим за такое сужение полосы, и платим ли мы вообще чем-либо? Разумеется, ничто не достается даром, и это будет рассмотрено ниже.

Рассмотрим задачу, которую должен выполнять приемник. Он должен различать все возможные уровни каждого импульса. Одинаково ли легко приемник различает восемь возможных уровней импульса, приведенного на рис. 2.24, а, и два возможных уровня каждого двоичного импульса на рис. 2.24, 61 Передача восьмиуровневого (по сравнению с двухуровневым) импульса требует большей энергии для эквивалентной эффективности детектирования. (Достоверность детектирования сигнала определяется отношением EiJNo в приемнике.) При равной средней мощности двоичных и восьмеричных импульсов первые детектировать проще, поскольку детектор приемника при принятии решения о принадлежности сигнала к одному из двух уровней располагает большей энергией сигнала на каждый уровень, чем при принятии решения относительно принадлежности сигнала к одному из 8 уровней. Чем расплачивается разработчик системы, если решает использовать более удобную в детектировании двоичную кодировку РСМ, а не восьмиуровневую кодировку РАМ? Плата состоит в трехкратном увеличении ширины полосы для данной скорости передачи данных, по сравнению с восьмеричными импульсами, поскольку каждый восьмеричный импульс должен заменяться тремя двоичными (ширина каждого из которых втрое меньше ширины восьмеричного импульса). Может возникнуть вопрос, почему бы ни использовать двоичные импульсы той же длительности, что и восьмеричные, и разрешить запаздывание информации? В некоторых случаях это приемлемо, но для систем связи реального времени такое увеличение задержки допустить нельзя - шестичасовые новости должны приниматься в 6 часов. (В главе 9 будет подробно рассмотрен компромисс между мощностью сигнала и шириной полосы передачи.)



Амплитуда

Время

Амплитуда

-1 gt;-

Время

101 111 101 010 010 011 010 001

Рис. 2.24. Передача сигналов с использованием импульсно-кодовой модуляции: а) восьмиуровневая передача; б) двухуровневая передача

Пример 2.3. Уровни квантования и многоуровневая передача сигналов

Информацию в аналоговом сигнале с максимальной частотой / =3 кГц необходимо передать через систему с М-уровневой кодировкой РАМ, где общее число уровней импульсов М= 16. Искажение, вызванное квантованием, не должно превышать plusmn; 1% удвоенной амплитуды аналогового сигнала.

а) Чему равно минимальное число бит в выборке или слове РСМ, которое можно использовать при оцифровывании аналогового сигнала?

б) Чему равны минимальная требуемая частота дискретизации и получаемая при этом скорость передачи битов?

в) Чему равна скорость передачи импульсов в кодировке РАМ (или символов)?

г) Если ширина полосы передачи (включая фильтрацию) равна 12 кГц, чему будет равно эффективное использование полосы для этой системы

В этом примере мы имеем дело с двумя типами уровней: несколькими уровнями квантования, необходимыми для удовлетворения требований ограничения искажения, и 16 уровнями импульсов в кодировке РАМ.

Решение

а) С помощью формулы (2.28) вычисляем следующее:

/ gt; log2

0,02

= log2 50 = 5,6.

Следовательно, / = 6 бит/выборку удовлетворяют требованиям, относящимся к искажению.

б) Используя критерий Найквиста, получаем минимальную частоту дискретизации /j = 2/ = 6000 выборок/секунду Из п а получаем, что каждая выборка - это 6-битовое слово в кодировке РСМ. Следовательно, скорость передачи битов Л = Z/j = 36 ООО бит/с.



в) Поскольку нужно использовать многоуровневые импульсы с М = 2* =16 уровнями, то к = log216 = 4 бит/символ. Следовательно, поток битов разбивается на группы по 4 бита с целью формирования новых 16-уровневых цифр РЛМ, и полученная скорость передачи символов равна R/k = 36 000/4 = 9 ООО символов/с.

г) Эффективность использования полосы - это отношение пропускной способности к ширине полосы в герцах, R/W. Поскольку Л = 36 ООО бит/с, а W= 12 кГц, получаем R/W= 3 бит/с/Гц.

2.9. Корреляционное кодирование

в 1963 году Адам Левдер (Adam Lender) [6, 7] показал, что с нулевой межсимвольной интерференцией можно передавать 2W символов/с, используя теоретическую минимальную полосу в W герц, без применения фильтров с высокой добротностью. Он использовал так называемый метод двубинарной передачи сигналов (duobinary signaling), также известный как корреляционное кодирование (correlative coding) и передача сигналов с частичным откликом (partial response signaling). Основной идеей, лежащей в основе двубинарного метода, является введение некоторого управляемого объема межсимвольной интерференции в поток данных, вместо того чтобы пытаться устранить ее полностью. Введя корреляционную интерференцию между импульсами и изменив процедуру детектирования, Лендер, по сути, уравновесил интерференцию в детекторе и, следовательно, получил идеальное заполнение в 2 символа/с/Гц, что ранее считалось неосуществимым.

2.9.1. Двубинарная передача сигналов

Цифровой фильтр

Идеальный

прямоугольный Устройство фильтр дискретизации

Ф

Задержка Гсекунд

О Г 2Г

гт гт

Хк-\

Канал t=J

о-екодер}-0

{Хк)

Рис. 2.25. Двубинарная передача сигналов

Чтобы понять, как двубинарная передача сигналов вводит контролируемую межсимвольную интерференцию, рассмотрим модель процесса. Операцию двубинарного кодирования можно рассматривать как реализацию схемы, показанной на рис. 2.25. Предположим, что последовательность двоичных символов {х*} необходимо передать на скорости R символов/с через систему, имеющую идеальный прямоугольный спектр ширины W= RI2 = 1/2Г Гц. Вы можете спросить: чем этот квадратный спектр на рис. 2.25 отличается от нереализуемой характеристики Найквиста? Он имеет ту же идеальную характеристику, но дело в том, что мы не пытаемся реализовать идеальный прямоугольный фильтр. На рис. 2.25 изображена эквивалентная модель, используемая для разработки фильтра, который легче аппроксимировать. До подачи на идеальный фильтр импульсы, как показано на рисунке, проходят через простой цифровой фильтр. Цифровой фильтр вносит задержку, длительностью в одну цифру; к каждому поступающему импульсу фильтр добавляет значение предьщущего импульса. Другими словами, с выхода цифрового фильтра поступает сумма двух импульсов. Каждый импульс последовательности {у}, получаемой на выходе цифрового фильтра, можно выразить следующим образом:



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 [ 32 ] 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358