www.chms.ru - вывоз мусора в Балашихе 

Динамо-машины  Сигналы и спектры 

1 2 3 4 [ 5 ] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

tion - FEC), позволяет автоматически исправлять ошибки (с определенными ограничениями). При рассмотрении структурированных последовательностей мы обсудим три распространенных метода - блочное, сверточное и турбокодирование. Вначале в главе 6 описывается линейное блочное кодирование. В главе 7 мы рассмотрим сверточное кодирование, декодирование Витерби (и другие алгоритмы декодирования) и сравним аппаратные и программные процедуры кодирования. В главе 8 представлено каскадное кодирование, которое привело к созданию класса кодов, известных как турбокоды, а также подробно рассмотрены коды Рида-Соломона.

В главе 9 обобщаются вопросы проектирования систем связи и представляются различные компромиссы из областей модуляции и кодировки, которые обязательно должны быть рассмотрены при проектировании системы. Обсуждаются теоретические офаничения, такие как критерий Найквиста и предел Шеннона. Также исследуются схемы модуляции, позволяющие эффективно использовать полосу, такие как решетчатое кодирование.

Глава 10 посвящена синхронизации. В цифровой связи синхронизация включает оценку как времени, так и частоты. Как показано на рис. 1.3, синхронизация выполняется для пяти параметров. Эталонные частоты когерентных систем требуется синхронизировать с несущей (и возможно, поднесущей) по частоте и фазе. Для некогерентных систем синхронизация фазы не обязательна. Основной процесс синхронизации по времени - это символьная синхронизация (или битовая синхронизация для бинарных символов). Демодулятор и детектор должны знать, когда начинать и заканчивать процесс детектирования символа и бита; ошибка синхронизации приводит к снижению эффективности детектирования. Следующий уровень синхронизации по времени, кадровая синхронизация, позволяет перестраивать сообщения. И последнее, сетевая синхронизация, позволяет скоординировать действия с другими пользователями с целью эффективного использования ресурсов. В главе 10 мы рассмотрим синхронизацию пространственно разделенных периодических процессов.

В главе 11 описаны уплотнение и множественный доступ. Значения этих двух терминов очень похожи; оба связаны с идеей совместного использования ресурсов. Основным отличием является то, что уплотнение реализуется локально (например, на печатной плате, в компоновочном узле или даже на аппаратном уровне), а множественный доступ - удаленно (например, нескольким пользователям требуется совместно использовать спутниковый транспондер). При уплотнении применяется алгоритм, известный априорно; обычно он внедрен непосредственно в систему. Множественный доступ, наоборот, обычно адаптивен и может требовать для работы некоторых дополнений. В главе 11 мы рассмотрим классические способы совместного использования ресурсов связи: частотное, временное и кодовое разделение. Кроме того, будут описаны некоторые технологии множественного доступа, возникшие в результате использования спутниковой связи.

В главе 12 вводится преобразование, изначально разработанное для военной связи и известное как расширение (spreading). Здесь рассмотрены методы расширения спектра, важные для получения защиты от интерференции и обеспечения секретности. Сигналы могут расширяться по частоте, времени или по частоте и времени. В основном в главе обсуждается расширение частоты. Также глава иллюстрирует применение метода расширения частоты для совместного использования ресурсов с ограниченной полосой в коммерческой переносной телефонии.

В главе 13 рассмафивается кодирование источника, которое включает эффективное описание исходной информации. Оно связано с процессом компактного описания

гпяня 1 Пигнялы и спектоы



сигнала согласно заданным критериям точности. Кодирование источника может применяться и к цифровым, и аналоговым сигналам; путем уменьшения избыточности информации коды источника могут снизить системную скорость передачи данных. Следовательно, основным преимушеством кодирования источника является возможность уменьшения объема требуемых ресурсов системы (например, ширины полосы).

Глава 14 посвяшена шифрованию и дешифрованию, основными задачами которых является аутентификация и обеспечение конфиденциальности связи. Поддержание конфиденциальности означает предотврашение извлечения информации из канала несанкционированными лицами ( подслушивание ). Аутентификация подразумевает предотврашение ввода в канал ложных сигналов несанкционированными лицами. В этой главе значительное внимание уделяется стандарту шифрования данных (data encryption standard - DES) и основным идеям, относящимся к классу систем шифрования, называемых системы с открытым ключом. Кроме того, здесь рассмотрена новая схема, названная Pretty Good Privacy ( достаточно хорошая секретность ), которая позволяет эффективно шифровать файлы, предназначенные для отправки по электронной почте.

В последней главе 15 рассмотрены каналы с замираниями. Здесь мы обсудим замирание, которое воздействует на мобильные системы, такие как переносные и персональные системы связи (personal communication system - PCS). В главе перечисляются основные механизмы замирания, типы ухудшения качества и методы борьбы с этим ухудшением. Подробно исследуются два метода: эквалайзер Витерби, реализованный в системе GSM (Global Systems for Mobile Communication - глобальная система мобильной связи), и RAKE-приемник, используемый в системах CDMA (Code Division Multiple Access - множественный доступ с кодовым разделением каналов).

1.1.3. Основная терминология цифровой связи

Ниже приведены некоторые основные термины, часто используемые в области цифровой связи.

Источник информации (information source). Устройство, передающее информацию посредством системы DCS. Источник информации может быть аналоговым или дискретным. Выход аналогового источника может иметь любое значение из непрерывного диапазона амплитуд, тогда как выход источника дискретной информации - значения из конечного множества амплитуд. Источники аналоговой информации преобразуются в источники цифровой информации посредством дискретизации или квантования. Методы дискретизации и квантования, называемые форматированием и кодированием источника (рис. 1.3), описаны в главах 2 и 13.

Текстовое сообщение (textual message). Последовательность символов (рис. 1.4, а). При цифровой передаче данных сообщение представляет собой последовательность цифр или символов, принадлежащих конечному набору символов или алфавиту.

Знак (character). Элемент алфавита или набора символов (рис. 1.4, б). Знаки могут представляться последовательностью двоичных цифр. Существует несколько стандартизованных кодов, используемых для знакового кодирования, в том числе код ASCII (American Standard Code for Information Interchange - Американский стаццартный код для обмена информацией), код EBCDIC (Extended Binary Coded Decimal Interchange Code - расширенный двоичный код обмена инфор-



мацией), код Холлерита (Hollerith code), код Бодо (Baudot code), код Муррея (Murray code) и код (азбука) Морзе (Morse code).

HOW ARE YOU? a) OK

$9 567 216,73

6) 9

000100111110011110101

1 Двоичный символ (*=1,W = 2) г) 10 Четверичный символ (*=2, W = 4) Oil Восьмеричный символ (* = 3, W = 8)

шштр

Время

Т- длительность символа

Рис. 1.4. Иллюстрация терминов: а) текстовые сообщения; б) символы; в) поток битов (7-битовый код ASCII); г) символы т i = 1, ...,М, М= 2; д) полосовой цифровой сигнал s,{t), ( = 1,..., Л/

Двоичная цифра (binary digit) (бит) (bit). Фундаментальная единица информации для всех цифровых систем. Термин бит также используется как единица объема информации, что описывается в главе 9.

Лоток битов (bit stream). Последовательность дюичньа цифр (нулей и единиц). Поток битов часто называют видеосигналом, или низкочастотным сигналом (baseband signal); это подразумевает, что его спектральные составляющие размещены от (или около) постоянной составляющей до некоторого конечного значения, обычно не превышающего несколько мегагерц. На рис. 1.4, в сообщение HOW представлено с использованием семибитоюго кода ASCII, а поток битов показан в форме двухуровневых импульсов. Последовательность импульсов изображена в виде крайне стилизованньа (идеально прямоугольных) сигналов с промежутками между соседними импульсами. В реальной системе импульсы никогда не будут выглядеть так, поскольку подобные промежутки абсолютно бесполезны. При данной скорости передачи данных промежутки увеличат ширину полосы, необходимую для передачи; или, при данной ширине полосы, они увеличат временного зааерж!, необходимую для получения сообщения.

Символ (symbol) (цифровое сообщение) (digital message). Символ - это группа из к бит, рассматриваемых как единое целое. Далее мы будем называть этот блок символом сообщения (message symbol) т, (i = 1, А/) из конечного набора символов или алфавита (рис. 1.4, г.) Размер алфавита М равен 2*, где к - число битов в символе. При низкочастотной (baseband) передаче каждый из симво-



1 2 3 4 [ 5 ] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358