www.chms.ru - вывоз мусора в Балашихе 

Динамо-машины  Сигналы и спектры 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 [ 54 ] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

при использовании только прямого фильтра выход содержит шум канала, внесенный каждой выборкой, произведенной в фильтре. Преимуществом реализации DFE является то, что фильтр обратной связи не только используется для удаления межсимвольной интерференции, но и работает на бесшумных уровнях квантования, а значит на его выходе отсутствует шум канала.

3.4.4. Заданное и адаптивное выравнивание

В инвариантных по времени каналах с известными частотными характеристиками, характеристики канала могут измеряться, и, соответственно, могут подгоняться значения весовых коэффициентов отводов. Если весовые коэффициенты остаются фиксированными в течение всего процесса передачи данных, выравнивание называется заданным (preset); простой метод заданного выравнивания заключается в установке весовых коэффициентов {с }, согласно некоторым усредненным знаниям о канале. Такой метод использовался для передачи информации по телефонным каналам со скоростью, не превышающей 2400 бит/с. Еще один метод заданного выравнивания состоит в передаче настроечной последовательности, которая в приемнике сравнивалась с последовательностью, сгенерированной локально. Отличия последовательностей позволяют установить весовые коэффициенты {с }. Важным моментом использования любой разновидности заданного выравнивания является то, что установка параметров производится либо единожды, либо в исключительно редких случаях (например, при прерывании передачи и необходимости ее повторной настройки).

Тип выравнивания, способный отслеживать постепенные изменения, называется адаптивным (adaptive). Его реализация может включать периодическую или непрерывную подборку весовых коэффициентов отводов. Периодическая корректировка выполняется путем периодической передачи начальной комбинации битов или краткой настроечной последовательности, заранее известной приемнику. Кроме того, стартовая комбинация битов используется приемником для определения начала передачи, установки уровня автоматической регулировки усиления и для согласования с принятым сигналом внутренних часов и гетеродинов. Непрерывная подстройка осуществляется посредством замещения известной тестовой последовательности набором информационных символов, которые получены на выходе эквалайзера и считаются известными данными. При непрерывной и автоматической (наиболее распространенный подход) настройке используется метод, управляемый решением (decision directed) [И]. Название метода не стоит путать с DFE - эквалайзером с обратной связью по решению. Управление решением связано только со способом юстировки (с помощью сигнала от детектора) весовых коэффициентов отводов фильтра. Эквалайзер DFE - это наличие дополнительного фильтра на выходе детектора, рекурсивным образом возвращающего сигнал на вход детектора. Следовательно, при использовании DFE существует два фильтра (прямой и фильтр обратной связи), обрабатывающие данные для снижения межсимвольной интерференции.

Недостатком заданного выравнивания является то, что оно требует предварительной настройки в начале каждой новой передачи. Кроме того, нестационарные каналы, вследствие межсимвольной интерференции и фиксированных весовых коэффициентах отводов, могут приводить к ухудшению производительности системы. Адаптивное выравнивание, в частности адаптивное выравнивание, управляемое решением, успешно устраняет межсимвольную интерференцию, если первоначальная вероятность ошибки не превышает один процент (эмпирическое правило). Если вероятность ошибки превышает один процент, эквалайзер, управляемый решением, может и не дать требуемого результата. Общее решение



этой проблемы - инициализировать эквалайзер с альтернативным процессом, (таким, как передача начальной комбинации битов), что позволит обеспечить низкую вероятность ошибки в канале, а затем переключиться в режим управления решением. Чтобы избежать пофешностей, вносимых начальной комбинацией битов, проекты многих систем предусматривают работу в режиме непрерывного широковешания с использованием для перво-началь1юй оценки канала алгоритмов слепого выравнивания (blind equalization). Эти алгоритмы согласовывают коэффициенты фильтра со статистикой выборок, а не с решениями относительно значений выборок [11].

Для оценки оптимальных коэффициентов автоматические эквалайзеры используют итеративные методы. Система уравнений, приведенная в выражении (3.93), не учитывает воздействие шума канала. При получении устойчивого решения для значений весовых коэффициентов фильтра, требуется усреднять либо данные для устойчивой статистики сигнала, либо зашумленное решение, полученное из зашумленных данных. Сложность алгоритма и проблемы численной устойчивости часто приводит к разработке алгоритмов, ус-редняюших зашумленные решения. Наиболее надежным из этого класса алгоритмов является алгоритм минимальной среднеквадратической ошибки. Каждая итерация этого алгоритма использует зашумленную оценку градиента ошибок для регулировки весовых коэффициентов относительно снижения среднеквадратической ошибки. Градиент шума - это просто произведение е(к) скалярного значения ошибки е(к) и вектора данных г. Вектор г. - это вектор выборок канала, которые подверглись воздействию шума и в момент к находились на выравниваюшем фильтре. Выше использовалось следуюшее математическое представление: передавался импульс, и выравнивающий фильтр работал с последовательностью выборок (вектором), представляющей импульсный отклик канала. Эти принятые выборки (в виде сдвига во времени) изображались как матрица х. Теперь, вместо использования отклика на импульс, предполагается передача данных на вход фильтра (рис. 3.27), соответственно определяется вектор принятых выборок г, представляющий информационный отклик канала. Ошибка записывается как разность желаемого сигнала и сигнала, полученного на выходе фильтра:

e(k)z(k)-zik)- (3.93)

Здесь z(k) - желаемый выходной сигнал (выборка без межсимвольной интерференции), а z(k) - оценка z(k) в момент времени к (производится в устройстве квантования, показанном на рис. 3.27), имеющая следующий вид:

i(k) = сг = х{к - п)с . (3.94)

n = -N

В формуле (3.94) суммирование представляет свертку входных информационных выборок с весовыми коэффициентами отводов {с }, где с - коэффициент п-го отвода в момент времени к, а - транспонированный вектор весовых коэффициентов в момент времени к. Итеративный процесс, обновляющий значения весовых коэффициентов в каждый момент времени к, имеет следующий вид:

с(к + 1) = с(к) + Ae(yt)r,. (3.95)

Здесь с(к) - вектор весовых коэффициентов фильтра в момент времени к, а А - малый член, офаничивающий шаг коэффициентов, а значит, контролирующий скорость сходимости алгоритма и дисперсию устойчивого решения. Это простое соотношение является

188 Глава 3 Ниякочяототняа лрмппипаима/пртрк-гмппвяимо



следствием принципа ортогональности, утверждающего, что ошибка, сопровождающая оптимальное решение, ортогональна обрабатываемым данным. Поскольку алгоритм рекурсивен (по отношению к весовым коэффициентам), необходимо следить за его устойчивостью. Устойчивость гарантируется, если параметр Л меньше значения обратной энергии данных в фильтре. Если алгоритм является устойчивым, он в среднем сходится к оптимальному решению, при этом его дисперсия пропорциональна параметру Д. Таким образом, желательно, чтобы параметр сходимости Д был больше (для более быстрой сходимости), но не настолько, чтобы привести к неустойчивости, хотя, с другой стороны, малый параметр Д обеспечивает малую дисперсию. Обычно для получения низкодисперсного устойчивого решения Д выбирается равным фиксированной небольшой величине [12]. Существуют схемы [13], позволяющие Д меняться от больших значений к меньшим в процессе получения устойчивого решения.

Отметим, что уравнения (3.93)-(3.95) приведены в контексте вещественных сигналов. Если используется квадратурная реализация, так что сигнал описывается вещественной и мнимой (или синфазной и квадратурной) упорядоченными парами, то каждый канал на рис. 3.27 в действительности состоит из двух каналов, и уравнения (3.93)-(3.95) необходимо записывать в комплексной форме. (Квадратурная реализация подробно рассмотрена в разделах 4.2.1 и 4.6.)

3.4.5. Частота обновления фильтра

Выравнивающие фильтры классифицируются по частоте дискретизации входного сигнала. Трансверсальный фильтр с отводами, размещенными через Г секунд, где Г - длительность передачи символа, называется эквалайзером с символьным разделением (symbol-spaced equalizer). Процесс дискретизации выхода эквалайзера с частотой 1/Г приводит к наложению, если полоса сигнала не офаничена строго величиной 1/Г Гц, т.е. спектральные компоненты сигнала, не разделенные промежутком 1/Г Гц, накладываются. Наложенная версия сигнала может давать спектральные нули [8]. Частота обновления фильтра, превышающая скорость передачи символов, помогает смягчить эту проблему. Эквалайзеры, использующие подобный метод, называются эквалайзерами с фракционным разделением (fractionally-spaced equalizer). В таких устройствах отводы фильтра разделены промежутками

Г lt;--- секунд, (3.96)

(1+г)

где через г обозначен избыток полосы. Другими словами, ширина полосы принятого сигнала равна следующему:

W lt;. (3.97)

Г необходимо выбрать так, чтобы передаточная функция эквалайзера Н,(/) была значительно шире и охватывала весь спеетр сигнала. Отметим, что сигнал на выходе эквалайзера по-прежнему выбирается с частотой 1/Г, но поскольку весовые коэффициенты отводов разделены промежутками Г(входной сигнал эквалайзера выбирается с частотой 1/Г), выравнивание принятого сигнала происходит до наложения его частотных компонентов. Моделирование эквалайзеров в телефонных линиях с Г= Г/2 показывает, что эквалайзеры с фракционным разделением превосходят эквалайзеры с символьным разделением [14].

5 а Rl ir\ODLJIHDf3LJl gt;10 189



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 [ 54 ] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358