www.chms.ru - вывоз мусора в Балашихе 

Динамо-машины  Сигналы и спектры 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 [ 74 ] 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358

мы знаем, как изменяется кривая при увеличении и уменьшении вероятности ошибки. Поэтому можем сказать, что на рис. 4.28 по мере роста к график перемещается в направлении уменьшения вероятности ошибки. На рис. 4,29 рост к приводит к увеличению вероятности ошибки. Подобное передвижение свидетельствует, что Л/-арная передача сигналов уменьшает вероятность ошибки при ортогональной передаче сигналов и увеличивает - при многофазной передаче. Справедливо ли это? Почему вообще используют многофазную модуляцию PSK, если она приводит к высокой вероятности ошибки по сравнению с бинарной PSK? Сказанное действительно справедливо, и во многих системах действительно применяется многофазная передача сигналов. Подвох бьш в формулировке вопроса: там подразумевалось, что зависимость вероятности ошибки от ENq является единственным критерием качества. На самом деле существует множество других характеристик (например, ширина полосы, пропускная способность, сложность, стоимость), но на рис. 4.28 и 4.29 явно показана только вероятность ошибки.


Еь/Л/о(ДБ)

Рис. 4.28. Зависимость РМ) от Еь/Nq для ортогональной М-арной передачи сигналов по каналу с гауссовым шумом при использовании когерентного детектирования. (Перепечатано с разрешения авторов из работы Ж С. Lindsey and М. К. Simon. Telecom-тшйсаИоп Systems Engineering. Prentice Hall, Inc., Englewood Cliffs, N. J.)




Eb/No(RB)

Рис. 4.29. Зависимость Рв(М) от Eb/Ng для ортогональной многофазной передачи сигналов по каналу с гауссовым шумом при использовании когерентного детектирования

Одной из рабочих характеристик, не представленных на рис. 4.28 и 4.29 явно, является необходимая ширина полосы. Для графиков на рис. 4.28 повышение значений к подразумевает увеличение требуемой ширины полосы. Для М-арных многофазных кривых, приведенных на рис. 4.29, рост величины к позволяет получать большую скорость передачи битов при той же ширине полосы. Другими словами, при фиксированной скорости передачи данных уменьшается необходимая полоса. Следовательно, графики вероятности ошибки и при ортогональной, и при многофазной передаче показывают, что М-арная передача сигналов представляет средство реализации компромиссов между параметрами системы. При ортогональной передаче сигналов повышение достоверности передачи может быть получено за счет расширения полосы. В случае многофазной передачи эффективность использования полосы может быть получена за счет вероятности ошибки. Подробнее о компромиссах между полосой и вероятностью ошибки рассказывается в главе 9.

4.8.3. Векторное представление сигналов MPSK

На рис. 4.30 показаны наборы сигналов MPSK для М = 2, 4, 8 и 16. На рис. 4.30, а видим бинарные {к=1, М=2) антиподные векторы s, и S2, угол между которыми равен 180 deg;. Граница областей решений разделяет сигнальное пространство на две области. На рисунке также показан вектор шума п, равный по амплитуде сигналу s,. При указанных направлении и амплитуде энергия вектора шума является минимальной, и детектор может допустить символьную ошибку.

На рис. 4.30, Увидим 4-арные (к = 2, М = 4) векторы, расположенные друг к другу под углом 90 deg;. Границы областей решений (на рисунке изображена только одна) делят сигнальное пространство на четыре области.



Линия решений (ЛР)

1 п

1 Si

S3 /

М = 2 а)

М = А б)


Рис. 4.30. Наборы сигналов MPSK для М = 2, 4, 8, 16

Здесь также изображен вектор шума п (начало - в вершине вектора сигнала, направление перпендикулярно ближайшей границе областей решений), являющийся вектором минимальной энергии, достаточной, чтобы детектор допустил символьную ошибку. Отметим, что вектор шума минимальной энергии на рис. 4.30, б меньше вектора шума на рис. 4.30, о, что свидетельствует о большей уязвимости 4-арной системы к шуму, по сравнению с бинарной (энергии сигналов в обоих случаях взяты равными). Изучая рис. 4.30, в, г, можно отметить следующую закономерность. При многофазной передаче сигналов по мере роста величины М на сигнальную плоскость помещается все больше сигнальных векторов. По мере того как векторы располагаются плотнее, для появления ошибки вследствие шума требуется все меньше энергии.

С помощью рис. 4.30 можно лучше понять поведение зависимости вероятности Рв от EJNq, изображенной на рис. 4.29, при росте к. Кроме того, рисунок позволяет взглянуть на природу компромиссов при многофазной передаче сигналов. Размещение большего числа векторов сигналов в сигнальном пространстве эквивалентно повышению скорости передачи данных без увеличения системной ширины полосы (все векторы ограничиваются одной и той же плоскостью). Другими словами, мы повысили использование полосы за счет вероятности ошибки. Рассмотрим рис. 4.30, г, где из приведенных вариантов вероятность ошибки является наивысшей. Чем мы может заплатить, чтобы выкупить возросшую вероятность ошибки? Иными словами, чем мы можем поступиться, чтобы расстояние между соседними векторами сигналов на рис. 4.30, д стало таким же, как на рис. 4.30, а? Мы можем увеличивать интенсивность сигнала (сделать векторы сигналов длиннее), пока минимальное расстояние от вершины вектора сигнала до линии решений не станет равным размеру вектора шума на рис. 4.30, о. Таким образом, для многофазной системы по мере роста М мы можем увеличивать производительность полосы либо за счет повышения вероятности ошибки, либо за счет увеличения отношения EINo.

Отметим, что на схемах, изображенных на рис. 4.30 для различных значений М, все векторы имеют одинаковую амплитуду. Это равносильно утверждению, что сопоставление различных схем выполняется при фиксированном отношении EJNq, где Е - энергия символа. Сравнительные схемы можно сделать и при фиксированном отнощении EJNo, в этом случае амплитуды векторов будут увеличиваться с ростом М. При

Л/ = 4, 8 и 16 амплитуды векторов будут, соответственно, в л/2 , -Уз и 2 раза больше векторов для случая М = 2. Как и в предьщущем случае, с ростом М будет усиливаться восприимчивость к шуму, но она не будет такой явной, как на рис. 4.30.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 [ 74 ] 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358